These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25353842)

  • 1. Low-dimensional functionality of complex network dynamics: neurosensory integration in the Caenorhabditis Elegans connectome.
    Kunert J; Shlizerman E; Kutz JN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052805. PubMed ID: 25353842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal Feedback and Network Structure Drive and Encode Caenorhabditis elegans Locomotion.
    Kunert JM; Proctor JL; Brunton SL; Kutz JN
    PLoS Comput Biol; 2017 Jan; 13(1):e1005303. PubMed ID: 28076347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward and backward locomotion patterns in C. elegans generated by a connectome-based model simulation.
    Sakamoto K; Soh Z; Suzuki M; Iino Y; Tsuji T
    Sci Rep; 2021 Jul; 11(1):13737. PubMed ID: 34215774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional connectomics from neural dynamics: probabilistic graphical models for neuronal network of
    Liu H; Kim J; Shlizerman E
    Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1758):. PubMed ID: 30201841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback.
    Bryden J; Cohen N
    Biol Cybern; 2008 Apr; 98(4):339-51. PubMed ID: 18350313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-Based Network Analysis of the Caenorhabditis elegans Connectome.
    Bacik KA; Schaub MT; Beguerisse-Díaz M; Billeh YN; Barahona M
    PLoS Comput Biol; 2016 Aug; 12(8):e1005055. PubMed ID: 27494178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome.
    Kim S; Kim H; Kralik JD; Jeong J
    PLoS Comput Biol; 2016 Aug; 12(8):e1005084. PubMed ID: 27540747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles.
    Azulay A; Itskovits E; Zaslaver A
    PLoS Comput Biol; 2016 Sep; 12(9):e1005021. PubMed ID: 27606684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoamine and neuropeptide connections significantly alter the degree distributions of the Caenorhabditis elegans connectome.
    Huang T; Sun Y; Zhang Z; Deng S; Peng R
    Neuroreport; 2017 Nov; 28(16):1071-1077. PubMed ID: 28926477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionality and Robustness of Injured Connectomic Dynamics in C. elegans: Linking Behavioral Deficits to Neural Circuit Damage.
    Kunert JM; Maia PD; Kutz JN
    PLoS Comput Biol; 2017 Jan; 13(1):e1005261. PubMed ID: 28056097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a virtual C. elegans: a framework for simulation and visualization of the neuromuscular system in a 3D physical environment.
    Palyanov A; Khayrulin S; Larson SD; Dibert A
    In Silico Biol; 2011-2012; 11(3-4):137-47. PubMed ID: 22935967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying the topology of a coupled FitzHugh-Nagumo neurobiological network via a pinning mechanism.
    Zhou J; Yu W; Li X; Small M; Lu JA
    IEEE Trans Neural Netw; 2009 Oct; 20(10):1679-84. PubMed ID: 19703799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network control principles predict neuron function in the Caenorhabditis elegans connectome.
    Yan G; Vértes PE; Towlson EK; Chew YL; Walker DS; Schafer WR; Barabási AL
    Nature; 2017 Oct; 550(7677):519-523. PubMed ID: 29045391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The connectome of a decision-making neural network.
    Jarrell TA; Wang Y; Bloniarz AE; Brittin CA; Xu M; Thomson JN; Albertson DG; Hall DH; Emmons SW
    Science; 2012 Jul; 337(6093):437-44. PubMed ID: 22837521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating Sensorimotor Mapping From Stimuli to Behaviors to Infer C. elegans Movements by Neural Transmission Ability Through Connectome Databases.
    Li CW; Lo CC; Chen BS
    IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2229-2241. PubMed ID: 26415185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis.
    Izquierdo EJ; Beer RD
    PLoS Comput Biol; 2013; 9(2):e1002890. PubMed ID: 23408877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical study of network models for neural networks and their dynamics.
    Govan G; Xenos A; Frisco P
    J Theor Biol; 2013 Nov; 336():1-10. PubMed ID: 23871957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural model generating klinotaxis behavior accompanied by a random walk based on C. elegans connectome.
    Chen M; Feng D; Su H; Su T; Wang M
    Sci Rep; 2022 Feb; 12(1):3043. PubMed ID: 35197494
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Towlson EK; Vértes PE; Yan G; Chew YL; Walker DS; Schafer WR; Barabási AL
    Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1758):. PubMed ID: 30201837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Griffiths phases and the stretching of criticality in brain networks.
    Moretti P; Muñoz MA
    Nat Commun; 2013; 4():2521. PubMed ID: 24088740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.