These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25353843)

  • 1. Catalytic reaction dynamics in inhomogeneous networks.
    Watanabe A; Yakubo K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052806. PubMed ID: 25353843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approximate von Neumann entropy for directed graphs.
    Ye C; Wilson RC; Comin CH; Costa Lda F; Hancock ER
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052804. PubMed ID: 25353841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal paths in complex networks with correlated weights: the worldwide airport network.
    Wu Z; Braunstein LA; Colizza V; Cohen R; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056104. PubMed ID: 17279965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity-dependent neural network model on scale-free networks.
    Pellegrini GL; de Arcangelis L; Herrmann HJ; Perrone-Capano C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016107. PubMed ID: 17677533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring biological network structure using exponential random graph models.
    Saul ZM; Filkov V
    Bioinformatics; 2007 Oct; 23(19):2604-11. PubMed ID: 17644557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks.
    Haraldsdóttir HS; Fleming RM
    PLoS Comput Biol; 2016 Nov; 12(11):e1004999. PubMed ID: 27870845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flux-based classification of reactions reveals a functional bow-tie organization of complex metabolic networks.
    Singh S; Samal A; Giri V; Krishna S; Raghuram N; Jain S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052708. PubMed ID: 23767567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.
    Zhao J; Geng C; Tao L; Zhang D; Jiang Y; Tang K; Zhu R; Yu H; Zhang W; He F; Li Y; Cao Z
    J Proteome Res; 2010 Apr; 9(4):1648-58. PubMed ID: 20136149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuation analysis in complex networks modeled by hidden-variable models: necessity of a large cutoff in hidden-variable models.
    Ostilli M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022807. PubMed ID: 25353534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discreteness-induced transition in catalytic reaction networks.
    Awazu A; Kaneko K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041915. PubMed ID: 17995034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico predicted structural and functional robustness of piscine steroidogenesis.
    Hala D; Huggett DB
    J Theor Biol; 2014 Mar; 345():99-108. PubMed ID: 24333207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stoichiometric analysis of self-maintaining metabolisms.
    Montero F; Nuño JC; Meléndez-Hevia E; Olasagasti F; Vázquez S; Morán F
    J Theor Biol; 2008 Jun; 252(3):427-32. PubMed ID: 18222485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transition in the biconnectivity of scale-free networks.
    Kim P; Lee DS; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022804. PubMed ID: 23496565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and prediction of nutritional requirements using structural properties of metabolic networks and support vector machines.
    Tamura T; Christian N; Takemoto K; Ebenhöh O; Akutsu T
    Genome Inform; 2010 Jan; 22():176-90. PubMed ID: 20238428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.
    Pereira JA
    Biosystems; 2014 Aug; 122():38-54. PubMed ID: 24971802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological pathway kinetic rate constants are scale-invariant.
    Grandison S; Morris RJ
    Bioinformatics; 2008 Mar; 24(6):741-3. PubMed ID: 18238786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological implications of negative curvature for biological and social networks.
    Albert R; DasGupta B; Mobasheri N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032811. PubMed ID: 24730903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering disassortativity in large scale-free networks.
    Litvak N; van der Hofstad R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022801. PubMed ID: 23496562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting hierarchical modularity in biological networks.
    Ravasz E
    Methods Mol Biol; 2009; 541():145-60. PubMed ID: 19381526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient rewirings for enhancing synchronizability of dynamical networks.
    Rad AA; Jalili M; Hasler M
    Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.