These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Human behavior as origin of traffic phases. Knospe W; Santen L; Schadschneider A; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015101. PubMed ID: 11800719 [TBL] [Abstract][Full Text] [Related]
24. Traffic behavior near an off ramp in the cellular automaton traffic model. Jia B; Jiang R; Wu QS Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056105. PubMed ID: 15244881 [TBL] [Abstract][Full Text] [Related]
25. Synchronized flow and wide moving jams from balanced vehicular traffic. Siebel F; Mauser W Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066108. PubMed ID: 16906915 [TBL] [Abstract][Full Text] [Related]
26. Relationship between microscopic dynamics in traffic flow and complexity in networks. Li XG; Gao ZY; Li KP; Zhao XM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016110. PubMed ID: 17677536 [TBL] [Abstract][Full Text] [Related]
27. Theory and Simulation for Traffic Characteristics on the Highway with a Slowdown Section. Xu D; Mao B; Rong Y; Wei W Comput Intell Neurosci; 2015; 2015():757823. PubMed ID: 26089864 [TBL] [Abstract][Full Text] [Related]
28. Bottlenecks in granular flow: when does an obstacle increase the flow rate in an hourglass? Alonso-Marroquin F; Azeezullah SI; Galindo-Torres SA; Olsen-Kettle LM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):020301. PubMed ID: 22463140 [TBL] [Abstract][Full Text] [Related]
29. Optimizing traffic lights in a cellular automaton model for city traffic. Brockfeld E; Barlovic R; Schadschneider A; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056132. PubMed ID: 11736039 [TBL] [Abstract][Full Text] [Related]
30. Thermotropic and barotropic phase transitions of dialkyldimethylammonium bromide bilayer membranes: effect of chain length. Goto M; Ishida S; Ito Y; Tamai N; Matsuki H; Kaneshina S Langmuir; 2011 May; 27(10):5824-31. PubMed ID: 21520909 [TBL] [Abstract][Full Text] [Related]
31. Analytical results of asymmetric exclusion processes with ramps. Huang DW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016102. PubMed ID: 16090031 [TBL] [Abstract][Full Text] [Related]
32. Percolation transition in dynamical traffic network with evolving critical bottlenecks. Li D; Fu B; Wang Y; Lu G; Berezin Y; Stanley HE; Havlin S Proc Natl Acad Sci U S A; 2015 Jan; 112(3):669-72. PubMed ID: 25552558 [TBL] [Abstract][Full Text] [Related]
33. Analytical results for a three-phase traffic model. Huang DW Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046112. PubMed ID: 14683007 [TBL] [Abstract][Full Text] [Related]
34. Effects of quenched randomness induced by car accidents on traffic flow in a cellular automata model. Yang XQ; Ma YQ; Zhao YM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046121. PubMed ID: 15600474 [TBL] [Abstract][Full Text] [Related]
35. Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps. Treiber M; Kesting A; Helbing D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016123. PubMed ID: 16907167 [TBL] [Abstract][Full Text] [Related]
36. High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities. Zhang P; Liu RX; Wong SC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056704. PubMed ID: 16089688 [TBL] [Abstract][Full Text] [Related]
37. Unraveling the puzzling intermediate states in the Biham-Middleton-Levine traffic model. Olmos LE; Muñoz JD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):050801. PubMed ID: 26066108 [TBL] [Abstract][Full Text] [Related]
38. Insights into vehicle conflicts based on traffic flow dynamics. Ding S; Abdel-Aty M; Wang Z; Wang D Sci Rep; 2024 Jan; 14(1):1536. PubMed ID: 38233428 [TBL] [Abstract][Full Text] [Related]
39. Analytic approach to the critical density in cellular automata for traffic flow. Gerwinski M; Krug J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):188-96. PubMed ID: 11969750 [TBL] [Abstract][Full Text] [Related]
40. Phase transition in a directed traffic flow network. Mukherjee G; Manna SS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066108. PubMed ID: 16089821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]