These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25353878)

  • 1. Long-term memory in experiments and numerical simulations of hydrodynamic and magnetohydrodynamic turbulence.
    Mininni P; Dmitruk P; Odier P; Pinton JF; Plihon N; Verhille G; Volk R; Bourgoin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053005. PubMed ID: 25353878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-frequency 1/f fluctuations in hydrodynamic and magnetohydrodynamic turbulence.
    Dmitruk P; Matthaeus WH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036305. PubMed ID: 17930339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.
    Guervilly C; Brummell NH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046317. PubMed ID: 23214687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of boundary conditions in helicoidal flow collimation: Consequences for the von Kármán sodium dynamo experiment.
    Varela J; Brun S; Dubrulle B; Nore C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063015. PubMed ID: 26764812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows.
    Herault J; Rincon F; Cossu C; Lesur G; Ogilvie GI; Longaretti PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036321. PubMed ID: 22060506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.
    Park K; Blackman EG; Subramanian K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053110. PubMed ID: 23767646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave-driven dynamo action in spherical magnetohydrodynamic systems.
    Reuter K; Jenko F; Tilgner A; Forest CB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056304. PubMed ID: 20365070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic α tensors and dynamo mechanisms in a von Kármán swirling flow.
    Ravelet F; Dubrulle B; Daviaud F; Ratié PA
    Phys Rev Lett; 2012 Jul; 109(2):024503. PubMed ID: 23030166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows.
    Giesecke A; Stefani F; Burguete J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066303. PubMed ID: 23368034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows.
    Mamatsashvili GR; Gogichaishvili DZ; Chagelishvili GD; Horton W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043101. PubMed ID: 24827349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of soft-iron impellers on the mode selection in the von kármán-sodium dynamo experiment.
    Giesecke A; Stefani F; Gerbeth G
    Phys Rev Lett; 2010 Jan; 104(4):044503. PubMed ID: 20366717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced magnetohydrodynamic turbulence in three dimensions using Taylor-Green symmetries.
    Krstulovic G; Brachet ME; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043017. PubMed ID: 24827342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical solutions of the three-dimensional magnetohydrodynamic alpha model.
    Mininni PD; Montgomery DC; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046304. PubMed ID: 15903783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamo Enhancement and Mode Selection Triggered by High Magnetic Permeability.
    Kreuzahler S; Ponty Y; Plihon N; Homann H; Grauer R
    Phys Rev Lett; 2017 Dec; 119(23):234501. PubMed ID: 29286693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamo efficiency controlled by hydrodynamic bistability.
    Miralles S; Herault J; Fauve S; Gissinger C; Pétrélis F; Daviaud F; Dubrulle B; Boisson J; Bourgoin M; Verhille G; Odier P; Pinton JF; Plihon N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063023. PubMed ID: 25019895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitating dynamo action via control of large-scale turbulence.
    Limone A; Hatch DR; Forest CB; Jenko F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066315. PubMed ID: 23368046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of turbulence on the dynamo threshold.
    Laval JP; Blaineau P; Leprovost N; Dubrulle B; Daviaud F
    Phys Rev Lett; 2006 May; 96(20):204503. PubMed ID: 16803178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of the four-fifths law for longitudinal third-order moments in incompressible magnetohydrodynamic turbulence in a periodic box.
    Yoshimatsu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066313. PubMed ID: 23005212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.
    Hamlin ND; Newman WI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale magnetic field generation by randomly forced shearing waves.
    Heinemann T; McWilliams JC; Schekochihin AA
    Phys Rev Lett; 2011 Dec; 107(25):255004. PubMed ID: 22243085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.