These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25353880)

  • 21. Flow distribution in closed networks: minimal sets of measuring sites.
    Wetter T; Repges R
    Biometrics; 1984 Mar; 40(1):85-94. PubMed ID: 6733236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of flow using ultrasound and microbubbles: a disruption replenishment model based on physical principles.
    Hudson JM; Karshafian R; Burns PN
    Ultrasound Med Biol; 2009 Dec; 35(12):2007-20. PubMed ID: 19822390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A technique for the estimation of plasma flow in single capillaries using photobleached dyes.
    Wieringa PA; Van Putten MJ; Duling BR
    Microvasc Res; 1993 Nov; 46(3):263-82. PubMed ID: 8121313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A one-dimensional mathematical model for studying the pulsatile flow in microvascular networks.
    Pan Q; Wang R; Reglin B; Cai G; Yan J; Pries AR; Ning G
    J Biomech Eng; 2014 Jan; 136(1):011009. PubMed ID: 24190506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Blood flowmetry in the microcirculation--pressure-flow relationships in the microvessels of rat mesentery (author's transl)].
    Ohshima N; Sato M
    Iyodenshi To Seitai Kogaku; 1979 Apr; 17(2):120-6. PubMed ID: 158668
    [No Abstract]   [Full Text] [Related]  

  • 26. Blood flow in capillary tubes: curvature and gravity effects.
    Hung TC; Hung TK; Bugliarello G
    Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345
    [No Abstract]   [Full Text] [Related]  

  • 27. Identification of capillary blood pressure levels at which capillary collapse is likely in a tissue subjected to large compressive and shear deformations.
    Shilo M; Gefen A
    Comput Methods Biomech Biomed Engin; 2012; 15(1):59-71. PubMed ID: 21181574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A computational model of hemodynamic parameters in cortical capillary networks.
    Safaeian N; Sellier M; David T
    J Theor Biol; 2011 Feb; 271(1):145-56. PubMed ID: 21130099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood flow in the capillary bed.
    Fung YC
    J Biomech; 1969 Oct; 2(4):353-72. PubMed ID: 16335137
    [No Abstract]   [Full Text] [Related]  

  • 31. Spontaneous oscillations of capillary blood flow in artificial microvascular networks.
    Forouzan O; Yang X; Sosa JM; Burns JM; Shevkoplyas SS
    Microvasc Res; 2012 Sep; 84(2):123-32. PubMed ID: 22732344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental microsphere targeting in a representative hepatic artery system.
    Richards AL; Kleinstreuer C; Kennedy AS; Childress E; Buckner GD
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):198-204. PubMed ID: 21965193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
    Zhang J
    Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal design of porous structures for the fastest liquid absorption.
    Shou D; Ye L; Fan J; Fu K
    Langmuir; 2014 Jan; 30(1):149-55. PubMed ID: 24325355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology.
    Gentile F; Ferrari M; Decuzzi P
    Ann Biomed Eng; 2008 Feb; 36(2):254-61. PubMed ID: 18172768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical analysis of oxygen concentration in a two dimensional array of capillaries.
    Salathe EP
    J Math Biol; 2003 Apr; 46(4):287-308. PubMed ID: 12673508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of characteristic of the vasomotor control dynamics based on plethysmographic blood flow measurement.
    de Macedo AR; da Nobrega AC; Machado JC; de Souza MN
    Physiol Meas; 2008 Feb; 29(2):205-15. PubMed ID: 18256452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn's equation and extended menisci.
    Chu KC; Tsao HK; Sheng YJ
    J Colloid Interface Sci; 2019 Mar; 538():340-348. PubMed ID: 30530031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow.
    Dupin MM; Halliday I; Care CM
    Med Eng Phys; 2006 Jan; 28(1):13-8. PubMed ID: 16006168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Capillary blood flow with dynamical change of tissue pressure caused by exterior force].
    Liu Y; Xu S; Yan J; Shen G; Sun W; Chew Y; Low H; Xu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):699-703. PubMed ID: 15553839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.