These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 25353895)

  • 1. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows.
    Li Q; Luo KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053022. PubMed ID: 25353895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.
    Li Q; Luo KH; Li XJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016709. PubMed ID: 23005565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows.
    Li Q; Luo KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053307. PubMed ID: 24329379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method.
    Li Q; Zhou P; Yan HJ
    Phys Rev E; 2016 Oct; 94(4-1):043313. PubMed ID: 27841508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model.
    Li Q; Luo KH; Li XJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053301. PubMed ID: 23767651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving thermodynamic consistency in a class of free-energy multiphase lattice Boltzmann models.
    Li Q; Yu Y; Huang RZ
    Phys Rev E; 2021 Jan; 103(1-1):013304. PubMed ID: 33601620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and numerical study of axisymmetric lattice Boltzmann models.
    Huang H; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Boltzmann modeling of three-phase incompressible flows.
    Liang H; Shi BC; Chai ZH
    Phys Rev E; 2016 Jan; 93(1):013308. PubMed ID: 26871191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models.
    Huang H; Krafczyk M; Lu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046710. PubMed ID: 22181310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density gradient calculation in a class of multiphase lattice Boltzmann models.
    Huang R; Wu H; Adams NA
    Phys Rev E; 2019 Oct; 100(4-1):043306. PubMed ID: 31771029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries.
    Li Q; Yu Y; Luo KH
    Phys Rev E; 2019 Nov; 100(5-1):053313. PubMed ID: 31869872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting.
    Li Q; Luo KH; Kang QJ; Chen Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053301. PubMed ID: 25493898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation.
    Begmohammadi A; Haghani-Hassan-Abadi R; Fakhari A; Bolster D
    Phys Rev E; 2020 Aug; 102(2-1):023305. PubMed ID: 32942360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies.
    Küllmer K; Krämer A; Joppich W; Reith D; Foysi H
    Phys Rev E; 2018 Feb; 97(2-1):023313. PubMed ID: 29548255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change.
    Li Q; Zhou P; Yan HJ
    Phys Rev E; 2017 Dec; 96(6-1):063303. PubMed ID: 29347407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers.
    Lycett-Brown D; Luo KH
    Phys Rev E; 2016 Nov; 94(5-1):053313. PubMed ID: 27967140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional pseudopotential lattice Boltzmann model for multiphase flows at high density ratio.
    Wu S; Chen Y; Chen LQ
    Phys Rev E; 2020 Nov; 102(5-1):053308. PubMed ID: 33327084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices.
    Li Q; Luo KH; He YL; Gao YJ; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016710. PubMed ID: 22400704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer.
    Shi Y; Yap YW; Sader JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013307. PubMed ID: 26274307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple lattice Boltzmann subgrid-scale model for convectional flows with high Rayleigh numbers within an enclosed circular annular cavity.
    Chen S; Tölke J; Krafczyk M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026702. PubMed ID: 19792276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.