These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 25353910)

  • 1. Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance.
    Haines BM; Grinstein FF; Fincke JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053302. PubMed ID: 25353910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drive asymmetry and the origin of turbulence in an ICF implosion.
    Thomas VA; Kares RJ
    Phys Rev Lett; 2012 Aug; 109(7):075004. PubMed ID: 23006379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.
    Schilling O; Latini M; Don WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct-drive double-shell implosion: A platform for burning-plasma physics studies.
    Hu SX; Epstein R; Theobald W; Xu H; Huang H; Goncharov VN; Regan SP; McKenty PW; Betti R; Campbell EM; Montgomery DS
    Phys Rev E; 2019 Dec; 100(6-1):063204. PubMed ID: 31962495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications.
    Hu SX; Collins LA; Goncharov VN; Boehly TR; Epstein R; McCrory RL; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033111. PubMed ID: 25314551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries.
    Scott RH; Clark DS; Bradley DK; Callahan DA; Edwards MJ; Haan SW; Jones OS; Spears BK; Marinak MM; Town RP; Norreys PA; Suter LJ
    Phys Rev Lett; 2013 Feb; 110(7):075001. PubMed ID: 25166377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced instability growth with high-adiabat high-foot implosions at the National Ignition Facility.
    Casey DT; Smalyuk VA; Raman KS; Peterson JL; Berzak Hopkins L; Callahan DA; Clark DS; Dewald EL; Dittrich TR; Haan SW; Hinkel DE; Hoover D; Hurricane OA; Kroll JJ; Landen OL; Moore AS; Nikroo A; Park HS; Remington BA; Robey HF; Rygg JR; Salmonson JD; Tommasini R; Widmann K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):011102. PubMed ID: 25122242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the neutron yield in fusion plasmas produced by Coulomb explosions of deuterium clusters irradiated by a petawatt laser.
    Bang W; Dyer G; Quevedo HJ; Bernstein AC; Gaul E; Donovan M; Ditmire T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023106. PubMed ID: 23496630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal decoupling of deuterium and tritium during the inertial confinement fusion shock-convergence phase.
    Kabadi NV; Simpson R; Adrian PJ; Bose A; Frenje JA; Gatu Johnson M; Lahmann B; Li CK; Parker CE; Séguin FH; Sutcliffe GD; Petrasso RD; Atzeni S; Eriksson J; Forrest C; Fess S; Glebov VY; Janezic R; Mannion OM; Rinderknecht HG; Rosenberg MJ; Stoeckl C; Kagan G; Hoppe M; Luo R; Schoff M; Shuldberg C; Sio HW; Sanchez J; Hopkins LB; Schlossberg D; Hahn K; Yeamans C
    Phys Rev E; 2021 Jul; 104(1):L013201. PubMed ID: 34412205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility.
    Olson RE; Leeper RJ; Kline JL; Zylstra AB; Yi SA; Biener J; Braun T; Kozioziemski BJ; Sater JD; Bradley PA; Peterson RR; Haines BM; Yin L; Berzak Hopkins LF; Meezan NB; Walters C; Biener MM; Kong C; Crippen JW; Kyrala GA; Shah RC; Herrmann HW; Wilson DC; Hamza AV; Nikroo A; Batha SH
    Phys Rev Lett; 2016 Dec; 117(24):245001. PubMed ID: 28009190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants.
    Hu SX; Fiksel G; Goncharov VN; Skupsky S; Meyerhofer DD; Smalyuk VA
    Phys Rev Lett; 2012 May; 108(19):195003. PubMed ID: 23003051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.
    Ma T; Patel PK; Izumi N; Springer PT; Key MH; Atherton LJ; Benedetti LR; Bradley DK; Callahan DA; Celliers PM; Cerjan CJ; Clark DS; Dewald EL; Dixit SN; Döppner T; Edgell DH; Epstein R; Glenn S; Grim G; Haan SW; Hammel BA; Hicks D; Hsing WW; Jones OS; Khan SF; Kilkenny JD; Kline JL; Kyrala GA; Landen OL; Le Pape S; MacGowan BJ; Mackinnon AJ; MacPhee AG; Meezan NB; Moody JD; Pak A; Parham T; Park HS; Ralph JE; Regan SP; Remington BA; Robey HF; Ross JS; Spears BK; Smalyuk V; Suter LJ; Tommasini R; Town RP; Weber SV; Lindl JD; Edwards MJ; Glenzer SH; Moses EI
    Phys Rev Lett; 2013 Aug; 111(8):085004. PubMed ID: 24010449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indirect-drive inertial confinement fusion using highly supersonic, radiatively cooled, plasma slugs.
    Chittenden JP; Dunne M; Zepf M; Lebedev SV; Ciardi A; Bland SN
    Phys Rev Lett; 2002 Jun; 88(23):235001. PubMed ID: 12059369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.
    Park HS; Hurricane OA; Callahan DA; Casey DT; Dewald EL; Dittrich TR; Döppner T; Hinkel DE; Berzak Hopkins LF; Le Pape S; Ma T; Patel PK; Remington BA; Robey HF; Salmonson JD; Kline JL
    Phys Rev Lett; 2014 Feb; 112(5):055001. PubMed ID: 24580603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.
    Hu SX; Collins LA; Boehly TR; Kress JD; Goncharov VN; Skupsky S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043105. PubMed ID: 24827353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility.
    Weber CR; Döppner T; Casey DT; Bunn TL; Carlson LC; Dylla-Spears RJ; Kozioziemski BJ; MacPhee AG; Nikroo A; Robey HF; Sater JD; Smalyuk VA
    Phys Rev Lett; 2016 Aug; 117(7):075002. PubMed ID: 27563971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Simulations Capture the Persistent Low-Mode Asymmetries Evident in Laser-Direct-Drive Implosions on OMEGA.
    Colaïtis A; Turnbull DP; Igumenschev IV; Edgell D; Shah RC; Mannion OM; Stoeckl C; Jacob-Perkins D; Shvydky A; Janezic R; Kalb A; Cao D; Forrest CJ; Kwiatkowski J; Regan S; Theobald W; Goncharov VN; Froula DH
    Phys Rev Lett; 2022 Aug; 129(9):095001. PubMed ID: 36083671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions.
    Forrest CJ; Radha PB; Knauer JP; Glebov VY; Goncharov VN; Regan SP; Rosenberg MJ; Sangster TC; Shmayda WT; Stoeckl C; Gatu Johnson M
    Phys Rev Lett; 2017 Mar; 118(9):095002. PubMed ID: 28306316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of vorticity and vortices in wall-bounded turbulent flows.
    Helgeland A; Pettersson Reif BA; Andreassen Ø; Wasberg CE
    IEEE Trans Vis Comput Graph; 2007; 13(5):1055-66. PubMed ID: 17622687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.
    Xu B; Hu SX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016408. PubMed ID: 21867323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.