These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25353945)

  • 41. Carbon doping enhances the fluoride removal performance of aluminum-based adsorbents.
    Tong L; Miao Y; Li S; Bao N; Zhou Q; Yang Y; Ye C
    Environ Sci Pollut Res Int; 2024 May; 31(23):33780-33793. PubMed ID: 38689041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent.
    Ren Z; Zhang G; Chen JP
    J Colloid Interface Sci; 2011 Jun; 358(1):230-7. PubMed ID: 21440898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast removal of high quantities of toxic arsenate via cationic p(APTMACl) microgels.
    Rehman SU; Siddiq M; Al-Lohedan H; Aktas N; Sahiner M; Demirci S; Sahiner N
    J Environ Manage; 2016 Jan; 166():217-26. PubMed ID: 26513320
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Covalent organic framework EB-COF:Br as adsorbent for phosphorus (V) or arsenic (V) removal from nearly neutral waters.
    Yang CH; Chang JS; Lee DJ
    Chemosphere; 2020 Aug; 253():126736. PubMed ID: 32302910
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al).
    Zhou M; Wu YN; Qiao J; Zhang J; McDonald A; Li G; Li F
    J Colloid Interface Sci; 2013 Sep; 405():157-63. PubMed ID: 23764233
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly effective remediation of high arsenic-bearing wastewater using aluminum-containing waste residue.
    Yang N; Qi X; Li Y; Li G; Duan X
    J Environ Manage; 2023 Jan; 325(Pt A):116417. PubMed ID: 36257224
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of arsenic(III,V) by a granular Mn-oxide-doped Al oxide adsorbent: surface characterization and performance.
    Wu K; Zhang J; Chang B; Liu T; Zhang F; Jin P; Wang W; Wang X
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18505-18519. PubMed ID: 28646311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular recognition and scavenging of arsenate from aqueous solution using dimetallic receptors.
    Moffat CD; Weiss DJ; Shivalingam A; White AJ; Salaün P; Vilar R
    Chemistry; 2014 Dec; 20(51):17168-77. PubMed ID: 25338508
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient multistep arsenate removal onto magnetite modified fly ash.
    Karanac M; Đolić M; Veličković Z; Kapidžić A; Ivanovski V; Mitrić M; Marinković A
    J Environ Manage; 2018 Oct; 224():263-276. PubMed ID: 30055459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sorptive removal of arsenate using termite mound.
    Fufa F; Alemayehu E; Lennartz B
    J Environ Manage; 2014 Jan; 132():188-96. PubMed ID: 24309232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.
    Tolonen ET; Hu T; Rämö J; Lassi U
    J Environ Manage; 2016 Oct; 181():856-862. PubMed ID: 27397845
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid and effective removal of As(III) and As(V) using spore@Ti
    Lan L; Zheng B; Zhang Y; Hu Y
    Chemosphere; 2018 Sep; 206():742-749. PubMed ID: 29793066
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of antimonite and antimonate from water using Fe-based metal-organic frameworks: The relationship between framework structure and adsorption performance.
    Zhang W; Li N; Xiao T; Tang W; Xiu G
    J Environ Sci (China); 2019 Dec; 86():213-224. PubMed ID: 31787186
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The optimization of As(V) removal over mesoporous alumina by using response surface methodology and adsorption mechanism.
    Han C; Pu H; Li H; Deng L; Huang S; He S; Luo Y
    J Hazard Mater; 2013 Jun; 254-255():301-309. PubMed ID: 23643954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Size- and morphology-controllable synthesis of MIL-96 (Al) by hydrolysis and coordination modulation of dual aluminium source and ligand systems.
    Liu D; Liu Y; Dai F; Zhao J; Yang K; Liu C
    Dalton Trans; 2015 Oct; 44(37):16421-9. PubMed ID: 26309045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing the water stability of Al-MIL-101-NH2 via postsynthetic modification.
    Wittmann T; Siegel R; Reimer N; Milius W; Stock N; Senker J
    Chemistry; 2015 Jan; 21(1):314-23. PubMed ID: 25352494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal.
    Dong S; Wang Y
    Water Res; 2016 Jan; 88():852-860. PubMed ID: 26613180
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions.
    Guo Y; Zhu Z; Qiu Y; Zhao J
    J Hazard Mater; 2012 Nov; 239-240():279-88. PubMed ID: 23000241
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CTAB-functionalized δ-FeOOH for the simultaneous removal of arsenate and phenylarsonic acid in phenylarsenic chemical warfare.
    Lin Z; Huan Z; Zhang J; Li J; Li Z; Guo P; Zhu Y; Zhang T
    Chemosphere; 2022 Apr; 292():133373. PubMed ID: 34958793
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.
    Kilianová M; Prucek R; Filip J; Kolařík J; Kvítek L; Panáček A; Tuček J; Zbořil R
    Chemosphere; 2013 Nov; 93(11):2690-7. PubMed ID: 24054133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.