These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25353949)

  • 21. Utilization of water hyacinth weed (Eichhornia crassipes) for the removal of Pb(II), Cd(II) and Zn(II) from aquatic environments: an adsorption isotherm study.
    Mahamadi C; Nharingo T
    Environ Technol; 2010 Oct; 31(11):1221-8. PubMed ID: 21046952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of nickel and zinc from single and binary metal solutions by Sargassum angustifolium.
    Ahmady-Asbchin S; Jafari N
    Water Sci Technol; 2013; 68(6):1384-90. PubMed ID: 24056438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activated carbon prepared from biomass as adsorbent: elimination of Ni(II) from aqueous solution.
    Kadirvelu K; Senthilkumar P; Thamaraiselvi K; Subburam V
    Bioresour Technol; 2002 Jan; 81(1):87-90. PubMed ID: 11708760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoscale Zero-Valent Iron and Chitosan Functionalized
    Chen XL; Li F; Xie XJ; Li Z; Chen L
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31443402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth.
    Cai R; Wang X; Ji X; Peng B; Tan C; Huang X
    J Environ Manage; 2017 Feb; 187():212-219. PubMed ID: 27912132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater.
    Asadi F; Shariatmadari H; Mirghaffari N
    J Hazard Mater; 2008 Jun; 154(1-3):451-8. PubMed ID: 18054431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competitive adsorption of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic systems using tourmaline.
    Liu H; Wang C; Liu J; Wang B; Sun H
    J Environ Manage; 2013 Oct; 128():727-34. PubMed ID: 23851318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous biosorption of nickel from aqueous solution using Chrysanthemum indicum derived biochar in a fixed-bed column.
    Vilvanathan S; Shanthakumar S
    Water Sci Technol; 2017 Oct; 76(7-8):1895-1906. PubMed ID: 28991804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of Cadmium (II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions.
    Liu C; Ye J; Lin Y; Wu J; Price GW; Burton D; Wang Y
    Environ Pollut; 2020 Sep; 264():114785. PubMed ID: 32559880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.
    Verma VK; Tewari S; Rai JP
    Bioresour Technol; 2008 Apr; 99(6):1932-8. PubMed ID: 17513104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption study of Ni(II) and Zn(II) by activated bone char residue.
    de A Soares D; Seolatto AA; de M Campos T; do Nascimento UP
    Water Sci Technol; 2013; 68(8):1837-43. PubMed ID: 24185068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption of Nickel (II) from Aqueous Solution by Bicarbonate Modified Coconut Oilcake Residue Carbon.
    Vijayakumari N; Srinivasan K
    J Environ Sci Eng; 2014 Jul; 56(3):255-62. PubMed ID: 26563074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment.
    Hassan M; Naidu R; Du J; Liu Y; Qi F
    Sci Total Environ; 2020 Feb; 702():134893. PubMed ID: 31733558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder.
    Hsu TC
    J Hazard Mater; 2009 Nov; 171(1-3):995-1000. PubMed ID: 19615814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes).
    Zhang F; Wang X; Yin D; Peng B; Tan C; Liu Y; Tan X; Wu S
    J Environ Manage; 2015 Apr; 153():68-73. PubMed ID: 25660498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption efficiency of natural materials for low-concentration cesium in solution.
    Miura A; Kubota T; Hamada K; Hitomi T
    Water Sci Technol; 2016; 73(10):2453-60. PubMed ID: 27191567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes).
    Mishra VK; Tripathi BD
    J Hazard Mater; 2009 May; 164(2-3):1059-63. PubMed ID: 18938031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of azo and anthraquinone dyes from aqueous solutions by Eichhornia Crassipes.
    El Zawahry MM; Kamel MM
    Water Res; 2004 Jul; 38(13):2967-72. PubMed ID: 15261534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on preparation of water hyacinth-based activated carbon for pulp and paper mill wastewater treatment.
    Boonpoke A
    J Environ Biol; 2015 Sep; 36(5):1143-8. PubMed ID: 26521558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.