These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25353991)

  • 1. Electric effect during the fast dendritic freezing of supercooled water droplets.
    Bauerecker S; Buttersack T
    J Phys Chem B; 2014 Nov; 118(47):13629-35. PubMed ID: 25353991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical Radius of Supercooled Water Droplets: On the Transition toward Dendritic Freezing.
    Buttersack T; Bauerecker S
    J Phys Chem B; 2016 Jan; 120(3):504-12. PubMed ID: 26727582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.
    Pach E; Rodriguez L; Verdaguer A
    J Phys Chem B; 2018 Jan; 122(2):818-826. PubMed ID: 28922601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
    Rzesanke D; Nadolny J; Duft D; Müller R; Kiselev A; Leisner T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9359-63. PubMed ID: 22294097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces.
    Wilson PW; Haymet AD
    J Phys Chem B; 2008 Sep; 112(37):11750-5. PubMed ID: 18720967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat of freezing for supercooled water: measurements at atmospheric pressure.
    Cantrell W; Kostinski A; Szedlak A; Johnson A
    J Phys Chem A; 2011 Jun; 115(23):5729-34. PubMed ID: 21087023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic Growth Model Involving Interface Kinetics for Supercooled Water.
    Wang T; Lü Y; Ai L; Zhou Y; Chen M
    Langmuir; 2019 Apr; 35(15):5162-5167. PubMed ID: 30907599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ice growth rate on the measured Workman-Reynolds freezing potential between ice and dilute NaCl solutions.
    Wilson PW; Haymet AD
    J Phys Chem B; 2010 Oct; 114(39):12585-8. PubMed ID: 20839818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous freezing of supercooled water under isochoric and adiabatic conditions.
    Prestipino S; Giaquinta PV
    J Phys Chem B; 2013 Jul; 117(27):8189-95. PubMed ID: 23799647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different freezing behavior of millimeter- and micrometer-scaled (NH₄)₂SO₄/H₂O droplets.
    Bogdan A; Molina MJ; Tenhu H; Mayer E; Bertel E; Loerting T
    J Phys Condens Matter; 2011 Jan; 23(3):035103. PubMed ID: 21406858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are superhydrophobic surfaces best for icephobicity?
    Jung S; Dorrestijn M; Raps D; Das A; Megaridis CM; Poulikakos D
    Langmuir; 2011 Mar; 27(6):3059-66. PubMed ID: 21319778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing and Ice Structure Formed in Protein Gels.
    Miyawaki O; Abe T; Yano T
    Biosci Biotechnol Biochem; 1992 Jan; 56(6):953-7. PubMed ID: 27280821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metastable states of water and ice during pressure-supported freezing of potato tissue.
    Schlüter O; Benet GU; Heinz V; Knorr D
    Biotechnol Prog; 2004; 20(3):799-810. PubMed ID: 15176885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the solidification of a supercooled liquid droplet lying on a surface.
    Tabakova S; Feuillebois F
    J Colloid Interface Sci; 2004 Apr; 272(1):225-34. PubMed ID: 14985041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C.
    Rosenfeld D; Woodley WL
    Nature; 2000 May; 405(6785):440-2. PubMed ID: 10839535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and FTIR studies of supercooled water confined to exterior and interior of mesoporous MCM-41.
    Kittaka S; Sou K; Yamaguchi T; Tozaki K
    Phys Chem Chem Phys; 2009 Oct; 11(38):8538-43. PubMed ID: 19774285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.