These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

823 related articles for article (PubMed ID: 25354020)

  • 41. Nanosheets of earth-abundant jarosite as novel anodes for high-rate and long-life lithium-ion batteries.
    Ding YL; Wen Y; Chen CC; van Aken PA; Maier J; Yu Y
    ACS Appl Mater Interfaces; 2015 May; 7(19):10518-24. PubMed ID: 25915822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.
    Jiang Y; Yuan T; Sun W; Yan M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6216-20. PubMed ID: 23106602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of the Na Storage Property of One-Dimensional Cu
    Li H; Jiang J; Huang J; Wang Y; Peng Y; Zhang Y; Hwang BJ; Zhao J
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13491-13498. PubMed ID: 29616799
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study of the Lithium Storage Mechanism of N-Doped Carbon-Modified Cu
    Tian G; Huang C; Luo X; Zhao Z; Peng Y; Gao Y; Tang N; Dsoke S
    Chemistry; 2021 Oct; 27(55):13774-13782. PubMed ID: 34318954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.
    Zhang Z; Wang Y; Tan Q; Li D; Chen Y; Zhong Z; Su F
    Nanoscale; 2014 Jan; 6(1):371-7. PubMed ID: 24201898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-Pot Synthesized Amorphous Cobalt Sulfide With Enhanced Electrochemical Performance as Anodes for Lithium-Ion Batteries.
    Ren LL; Wang LH; Qin YF; Li Q
    Front Chem; 2021; 9():818255. PubMed ID: 35071194
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities.
    Wu P; Du N; Zhang H; Liu J; Chang L; Wang L; Yang D; Jiang JZ
    Nanoscale; 2012 Jul; 4(13):4002-6. PubMed ID: 22677937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D Woven-Like Carbon Micropattern Decorated with Silicon Nanoparticles for Use in Lithium-Ion Batteries.
    Kang DY; Kim C; Gueon D; Park G; Kim JS; Lee JK; Moon JH
    ChemSusChem; 2015 Oct; 8(20):3414-8. PubMed ID: 26383881
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MOF-Derived CuS@Cu-BTC Composites as High-Performance Anodes for Lithium-Ion Batteries.
    Wang P; Shen M; Zhou H; Meng C; Yuan A
    Small; 2019 Nov; 15(47):e1903522. PubMed ID: 31608560
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.
    Liu X; Yang J; Hou W; Wang J; Nuli Y
    ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.
    Zhao D; Zheng L; Xiao Y; Wang X; Cao M
    ChemSusChem; 2015 Jul; 8(13):2212-22. PubMed ID: 26018759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.