BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25354177)

  • 21. pH-sensitive nano-systems for drug delivery in cancer therapy.
    Liu J; Huang Y; Kumar A; Tan A; Jin S; Mozhi A; Liang XJ
    Biotechnol Adv; 2014; 32(4):693-710. PubMed ID: 24309541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.
    Krogstad EA; Ramanathan R; Nhan C; Kraft JC; Blakney AK; Cao S; Ho RJY; Woodrow KA
    Biomaterials; 2017 Nov; 144():1-16. PubMed ID: 28802690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vaginal mucoadhesive drug delivery systems.
    de Araújo Pereira RR; Bruschi ML
    Drug Dev Ind Pharm; 2012 Jun; 38(6):643-52. PubMed ID: 21999572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mucoadhesive nanosystems for vaginal microbicide development: friend or foe?
    das Neves J; Amiji M; Sarmento B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(4):389-99. PubMed ID: 21506290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gels as vaginal drug delivery systems.
    das Neves J; Bahia MF
    Int J Pharm; 2006 Aug; 318(1-2):1-14. PubMed ID: 16621366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanotechnology platforms; an innovative approach to brain tumor therapy.
    Nair BG; Varghese SH; Nair R; Yoshida Y; Maekawa T; Kumar DS
    Med Chem; 2011 Sep; 7(5):488-503. PubMed ID: 21801148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders.
    Patel R; Yadav BK; Patel G
    Recent Pat Nanotechnol; 2023; 17(3):208-227. PubMed ID: 35762539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Know-how of Polymeric Nanocarrier Based Vaginal Drug Delivery System: Pitfalls, Challenges and Trends.
    Kanojiya P; Wadetwar R; Karemore M; Prasad S
    Pharm Nanotechnol; 2024 Jan; ():. PubMed ID: 38279713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging Use of Nanotechnology in the Treatment of Neurological Disorders.
    Chhabra R; Tosi G; Grabrucker AM
    Curr Pharm Des; 2015; 21(22):3111-30. PubMed ID: 26027574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Miniaturized Polymeric Systems for the Intravaginal Gene Therapies: Recent Update on Unconventional Delivery.
    Pandey M; Ting JSS; Gorain B; Jain N; Mayuren J
    Curr Pharm Des; 2023; 29(40):3254-3262. PubMed ID: 37438899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro and ex vivo models for evaluating vaginal drug delivery systems.
    Shapiro RL; DeLong K; Zulfiqar F; Carter D; Better M; Ensign LM
    Adv Drug Deliv Rev; 2022 Dec; 191():114543. PubMed ID: 36208729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vaginal drug delivery system: A promising route of drug administration for local and systemic diseases.
    Subi MTM; Selvasudha N; Vasanthi HR
    Drug Discov Today; 2024 Jun; 29(6):104012. PubMed ID: 38705512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery.
    Roger E; Lagarce F; Garcion E; Benoit JP
    Nanomedicine (Lond); 2010 Feb; 5(2):287-306. PubMed ID: 20148639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mucoadhesive and thermogelling systems for vaginal drug delivery.
    Caramella CM; Rossi S; Ferrari F; Bonferoni MC; Sandri G
    Adv Drug Deliv Rev; 2015 Sep; 92():39-52. PubMed ID: 25683694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel ex vivo protocol using porcine vagina to assess drug permeation from mucoadhesive and colloidal pharmaceutical systems.
    Pereira MN; Reis TA; Matos BN; Cunha-Filho M; Gratieri T; Gelfuso GM
    Colloids Surf B Biointerfaces; 2017 Oct; 158():222-228. PubMed ID: 28697437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimuli-responsive nanoplatforms for antibacterial applications.
    Huang Y; Zou L; Wang J; Jin Q; Ji J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 May; 14(3):e1775. PubMed ID: 35142071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Avoiding a Sticky Situation: Bypassing the Mucus Barrier for Improved Local Drug Delivery.
    Zierden HC; Josyula A; Shapiro RL; Hsueh HT; Hanes J; Ensign LM
    Trends Mol Med; 2021 May; 27(5):436-450. PubMed ID: 33414070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.
    Wu N; Zhang X; Li F; Zhang T; Gan Y; Li J
    Int J Nanomedicine; 2015; 10():5383-96. PubMed ID: 26347257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in "smart" delivery systems for extended drug release in cancer therapy.
    Kalaydina RV; Bajwa K; Qorri B; Decarlo A; Szewczuk MR
    Int J Nanomedicine; 2018; 13():4727-4745. PubMed ID: 30154657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake.
    Ensign LM; Hoen TE; Maisel K; Cone RA; Hanes JS
    Biomaterials; 2013 Sep; 34(28):6922-9. PubMed ID: 23769419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.