BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 25354229)

  • 21. Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation.
    Chang YC; Huang CN; Lin CH; Chang HC; Wu CC
    Proteomics; 2010 Aug; 10(16):2961-71. PubMed ID: 20629170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion.
    Eaton P; Byers HL; Leeds N; Ward MA; Shattock MJ
    J Biol Chem; 2002 Mar; 277(12):9806-11. PubMed ID: 11777920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).
    Gu L; Robinson RA
    Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and characterization of a novel reagent containing dansyl group, which specifically alkylates sulfhydryl group: an example of application for protein chemistry.
    Hasegawa G; Kikuchi M; Kobayashi Y; Saito Y
    J Biochem Biophys Methods; 2005 Apr; 63(1):33-42. PubMed ID: 15892976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteines under ROS attack in plants: a proteomics view.
    Akter S; Huang J; Waszczak C; Jacques S; Gevaert K; Van Breusegem F; Messens J
    J Exp Bot; 2015 May; 66(10):2935-44. PubMed ID: 25750420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells.
    Albertolle ME; Glass SM; Trefts E; Guengerich FP
    J Biol Chem; 2019 Apr; 294(16):6522-6530. PubMed ID: 30850396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.
    García-Santamarina S; Boronat S; Hidalgo E
    Biochemistry; 2014 Apr; 53(16):2560-80. PubMed ID: 24738931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress.
    Landar A; Oh JY; Giles NM; Isom A; Kirk M; Barnes S; Darley-Usmar VM
    Free Radic Biol Med; 2006 Feb; 40(3):459-68. PubMed ID: 16443161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of different biotinylation reagents, tryptic digestion procedures, and mass spectrometric techniques for 2-D peptide mapping of membrane proteins.
    Scheurer SB; Roesli C; Neri D; Elia G
    Proteomics; 2005 Aug; 5(12):3035-9. PubMed ID: 16003826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.
    Bollineni RC; Hoffmann R; Fedorova M
    Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of carbonyl-modified proteins in interfibrillar rat mitochondria using N'-aminooxymethylcarbonylhydrazino-D-biotin as an aldehyde/keto-reactive probe in combination with Western blot analysis and tandem mass spectrometry.
    Chung WG; Miranda CL; Maier CS
    Electrophoresis; 2008 Mar; 29(6):1317-24. PubMed ID: 18348219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells.
    Kinumi T; Kimata J; Taira T; Ariga H; Niki E
    Biochem Biophys Res Commun; 2004 May; 317(3):722-8. PubMed ID: 15081400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of cysteine oxidation in human estrogen receptor by mass spectrometry.
    Atsriku C; Benz CC; Scott GK; Gibson BW; Baldwin MA
    Anal Chem; 2007 Apr; 79(8):3083-90. PubMed ID: 17373775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats.
    Baez NO; Reisz JA; Furdui CM
    Free Radic Biol Med; 2015 Mar; 80():191-211. PubMed ID: 25261734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of sodium selenite, glutathione, arsenic species, and omega class human glutathione transferase.
    Zakharyan RA; Tsaprailis G; Chowdhury UK; Hernandez A; Aposhian HV
    Chem Res Toxicol; 2005 Aug; 18(8):1287-95. PubMed ID: 16097802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.