These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25354231)

  • 1. Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame.
    Cain J; Laskin A; Kholghy MR; Thomson MJ; Wang H
    Phys Chem Chem Phys; 2014 Dec; 16(47):25862-75. PubMed ID: 25354231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator.
    Mueller L; Jakobi G; Orasche J; Karg E; Sklorz M; Abbaszade G; Weggler B; Jing L; Schnelle-Kreis J; Zimmermann R
    Anal Bioanal Chem; 2015 Aug; 407(20):5911-22. PubMed ID: 25711989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular content of nascent soot: Family characterization using two-step laser desorption laser ionization mass spectrometry.
    Sabbah H; Commodo M; Picca F; De Falco G; Minutolo P; D'Anna A; Joblin C
    Proc Combust Inst; 2021; 38(1):1241-1248. PubMed ID: 33850480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame.
    Xie X; Zheng S; Sui R; Luo Z; Liu S; Consalvi JL
    ACS Omega; 2021 Apr; 6(15):10371-10382. PubMed ID: 34056190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame experiments at the advanced light source: new insights into soot formation processes.
    Hansen N; Skeen SA; Michelsen HA; Wilson KR; Kohse-Höinghaus K
    J Vis Exp; 2014 May; (87):. PubMed ID: 24894694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Molecular Composition of Soot.
    Jacobson RS; Korte AR; Vertes A; Miller JH
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4484-4490. PubMed ID: 31917890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces.
    Cain JP; Gassman PL; Wang H; Laskin A
    Phys Chem Chem Phys; 2010; 12(20):5206-18. PubMed ID: 21491682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and emission of large furans and oxygenated hydrocarbons from flames.
    Johansson KO; Dillstrom T; Monti M; El Gabaly F; Campbell MF; Schrader PE; Popolan-Vaida DM; Richards-Henderson NK; Wilson KR; Violi A; Michelsen HA
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8374-9. PubMed ID: 27410045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing the solid soot particulates formed in a fuel-rich flame by solvent-free matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Zhang W; Shao C; Sarathy SM
    Rapid Commun Mass Spectrom; 2020 Feb; 34(4):e8596. PubMed ID: 31756786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames.
    Davis J; Molnar E; Novosselov I
    Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic and network analysis of polycyclic aromatic growth in a coflow diffusion flame.
    Saldinger JC; Elvati P; Violi A
    Phys Chem Chem Phys; 2021 Feb; 23(7):4326-4333. PubMed ID: 33587735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry.
    Li Y; Qi F
    Acc Chem Res; 2010 Jan; 43(1):68-78. PubMed ID: 19705821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Aliphatically Bridged Multi-Core Polycyclic Aromatic Hydrocarbons in Sooting Flames with Atmospheric-Sampling High-Resolution Tandem Mass Spectrometry.
    Adamson BD; Skeen SA; Ahmed M; Hansen N
    J Phys Chem A; 2018 Dec; 122(48):9338-9349. PubMed ID: 30415549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress toward the Quantitative Analysis of PAHs Adsorbed on Soot by Laser Desorption/Laser Ionization/Time-of-Flight Mass Spectrometry.
    Faccinetto A; Focsa C; Desgroux P; Ziskind M
    Environ Sci Technol; 2015 Sep; 49(17):10510-20. PubMed ID: 26267485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the polycyclic aromatic hydrocarbons involved in soot inception.
    Shao C; Wang Q; Zhang W; Bennett A; Li Y; Guo J; Im HG; Roberts WL; Violi A; Sarathy SM
    Commun Chem; 2023 Oct; 6(1):223. PubMed ID: 37845500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed Study of the Formation of Soot Precursors and Soot in Highly Controlled Ethylene(/Toluene) Counterflow Diffusion Flames.
    Gleason K; Gomez A
    J Phys Chem A; 2023 Jan; 127(1):276-285. PubMed ID: 36542816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry of particles formed in a deuterated ethene diffusion flame.
    Fletcher RA; Dobbins RA; Chang HC
    Anal Chem; 1998 Jul; 70(13):2745-9. PubMed ID: 21644789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soot Morphology and Nanostructure Differences between Chinese Aviation Kerosene and Algae-Based Aviation Biofuel in Free Jet Laminar Diffusion Flames.
    Chang D; Li J; Yang Y; Gan Z
    ACS Omega; 2022 Apr; 7(14):11560-11569. PubMed ID: 35449979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Anal Chem; 2012 Jun; 84(11):5007-16. PubMed ID: 22582767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes to the chemical composition of soot from heterogeneous oxidation reactions.
    Browne EC; Franklin JP; Canagaratna MR; Massoli P; Kirchstetter TW; Worsnop DR; Wilson KR; Kroll JH
    J Phys Chem A; 2015 Feb; 119(7):1154-63. PubMed ID: 25654760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.