These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25354231)

  • 21. Soot Morphology and Nanostructure in Complex Flame Flow Patterns via Secondary Particle Surface Growth.
    Davis J; Tiwari K; Novosselov I
    Fuel (Lond); 2019 Jun; 245():447-457. PubMed ID: 31736504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polycyclic aromatic hydrocarbon formation mechanism in the "particle phase". A theoretical study.
    Indarto A; Giordana A; Ghigo G; Maranzana A; Tonachini G
    Phys Chem Chem Phys; 2010 Aug; 12(32):9429-40. PubMed ID: 20589277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemistry of molecular growth processes in flames.
    Smyth KC; Miller JH
    Science; 1987 Jun; 236(4808):1540-6. PubMed ID: 17835737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry.
    Podgorski DC; Hamdan R; McKenna AM; Nyadong L; Rodgers RP; Marshall AG; Cooper WT
    Anal Chem; 2012 Feb; 84(3):1281-7. PubMed ID: 22242739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames.
    Kempema NJ; Long MB
    Opt Lett; 2018 Mar; 43(5):1103-1106. PubMed ID: 29489790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Spin-Triplet Polycyclic Aromatic Hydrocarbons in Soot Surface Growth.
    Zhang HB; You X; Law CK
    J Phys Chem Lett; 2015 Feb; 6(3):477-81. PubMed ID: 26261966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research on soot of black smoke from ceramic furnace flue gas: characterization of soot.
    Lu P; Li C; Zeng G; Xie X; Cai Z; Zhou Y; Zhao Y; Zhan Q; Zeng Z
    J Hazard Mater; 2012 Jan; 199-200():272-81. PubMed ID: 22138172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence on the formation of dimers of polycyclic aromatic hydrocarbons in a laminar diffusion flame.
    Faccinetto A; Irimiea C; Minutolo P; Commodo M; D'Anna A; Nuns N; Carpentier Y; Pirim C; Desgroux P; Focsa C; Mercier X
    Commun Chem; 2020 Aug; 3(1):112. PubMed ID: 36703341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames.
    Grotheer HH; Pokorny H; Barth KL; Thierley M; Aigner M
    Chemosphere; 2004 Dec; 57(10):1335-42. PubMed ID: 15519378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation.
    Paur HR; Baumann W; Mätzing H; Seifert H
    Nanotechnology; 2005 Jul; 16(7):S354-61. PubMed ID: 21727452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of PAH and soot precursors in benzene flames by addition of ethanol.
    Golea D; Rezgui Y; Guemini M; Hamdane S
    J Phys Chem A; 2012 Apr; 116(14):3625-42. PubMed ID: 22429107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulation of soot formation during diesel combustion with oxygenated fuel addition.
    Chen C; Jiang X
    Phys Chem Chem Phys; 2020 Sep; 22(36):20829-20836. PubMed ID: 32914155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of ammonia on morphological characteristics and nanostructure of soot in the combustion of diesel surrogate fuels.
    Zhang K; Xu Y; Li Y; Liu Y; Wang B; Wang H; Ma J; Cheng X
    J Hazard Mater; 2023 Mar; 445():130645. PubMed ID: 37056027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation.
    Kholghy MR; Kelesidis GA; Pratsinis SE
    Phys Chem Chem Phys; 2018 Apr; 20(16):10926-10938. PubMed ID: 29542752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry.
    Happold J; Grotheer HH; Aigner M
    Rapid Commun Mass Spectrom; 2007; 21(7):1247-54. PubMed ID: 17342787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soot Formation in Methane Pyrolysis Reactor: Modeling Soot Growth and Particle Characterization.
    Shirsath AB; Mokashi M; Lott P; Müller H; Pashminehazar R; Sheppard T; Tischer S; Maier L; Grunwaldt JD; Deutschmann O
    J Phys Chem A; 2023 Mar; 127(9):2136-2147. PubMed ID: 36848592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of flame-generated C10 to C 160 polycyclic aromatic hydrocarbons by atmospheric-pressure chemical ionization mass spectrometry with liquid introduction via heated nebulizer interface.
    Lafleur AL; Taghizadeh K; Howard JB; Anacleto JF; Quilliam MA
    J Am Soc Mass Spectrom; 1996 Mar; 7(3):276-86. PubMed ID: 24203299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dimers of polycyclic aromatic hydrocarbons: the missing pieces in the soot formation process.
    Mercier X; Carrivain O; Irimiea C; Faccinetto A; Therssen E
    Phys Chem Chem Phys; 2019 Apr; 21(16):8282-8294. PubMed ID: 30945709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.
    Koehler KA; DeMott PJ; Kreidenweis SM; Popovicheva OB; Petters MD; Carrico CM; Kireeva ED; Khokhlova TD; Shonija NK
    Phys Chem Chem Phys; 2009 Sep; 11(36):7906-20. PubMed ID: 19727498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation and Evolution of Soot in Ethylene Inverse Diffusion Flames in Ozone Atmosphere.
    Ying Y; Liu D
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.