These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25354355)

  • 1. RNA signal amplifier circuit with integrated fluorescence output.
    Akter F; Yokobayashi Y
    ACS Synth Biol; 2015 May; 4(5):655-8. PubMed ID: 25354355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis, and application of Spinach molecular beacons triggered by strand displacement.
    Bhadra S; Ellington AD
    Methods Enzymol; 2015; 550():215-49. PubMed ID: 25605388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Spinach molecular beacon triggered by strand displacement.
    Bhadra S; Ellington AD
    RNA; 2014 Aug; 20(8):1183-94. PubMed ID: 24942625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Photophysical Behavior of DFHBI Derivatives: Fluorogenic Molecules that Illuminate the Spinach RNA Aptamer.
    Santra K; Geraskin I; Nilsen-Hamilton M; Kraus GA; Petrich JW
    J Phys Chem B; 2019 Mar; 123(11):2536-2545. PubMed ID: 30807171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysics of DFHBI bound to RNA aptamer Baby Spinach.
    Dao NT; Haselsberger R; Khuc MT; Phan AT; Voityuk AA; Michel-Beyerle ME
    Sci Rep; 2021 Apr; 11(1):7356. PubMed ID: 33795733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Baby Spinach and Broccoli for imaging of structured cellular RNAs.
    Okuda M; Fourmy D; Yoshizawa S
    Nucleic Acids Res; 2017 Feb; 45(3):1404-1415. PubMed ID: 28180326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mRNA imaging in the chloroplast of Chlamydomonas reinhardtii using the light-up aptamer Spinach.
    Guzmán-Zapata D; Domínguez-Anaya Y; Macedo-Osorio KS; Tovar-Aguilar A; Castrejón-Flores JL; Durán-Figueroa NV; Badillo-Corona JA
    J Biotechnol; 2017 Jun; 251():186-188. PubMed ID: 28359866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures.
    Kikuchi N; Kolpashchikov DM
    Chembiochem; 2016 Sep; 17(17):1589-92. PubMed ID: 27305425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of the chromophore of Spinach aptamer based on QM:MM calculations.
    Skúpa K; Urban J
    J Mol Model; 2017 Feb; 23(2):46. PubMed ID: 28154983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of human immunodeficiency virus RNAs in living cells using Spinach RNA aptamers.
    Burch BD; Garrido C; Margolis DM
    Virus Res; 2017 Jan; 228():141-146. PubMed ID: 27914932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorophore ligand binding and complex stabilization of the RNA Mango and RNA Spinach aptamers.
    Jeng SC; Chan HH; Booy EP; McKenna SA; Unrau PJ
    RNA; 2016 Dec; 22(12):1884-1892. PubMed ID: 27777365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging.
    Han KY; Leslie BJ; Fei J; Zhang J; Ha T
    J Am Chem Soc; 2013 Dec; 135(50):19033-8. PubMed ID: 24286188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells.
    Zhang J; Fei J; Leslie BJ; Han KY; Kuhlman TE; Ha T
    Sci Rep; 2015 Nov; 5():17295. PubMed ID: 26612428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of RNA-based c-di-GMP fluorescent sensors through tuning their structural modules.
    Inuzuka S; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2016 Aug; 122(2):183-7. PubMed ID: 26968125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spinach RNA aptamer as a characterization tool for synthetic biology.
    Pothoulakis G; Ceroni F; Reeve B; Ellis T
    ACS Synth Biol; 2014 Mar; 3(3):182-7. PubMed ID: 23991760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinach-based RNA mimicking GFP in plant cells.
    Yu Z; Wang Y; Mei F; Yan H; Jin Z; Zhang P; Zhang X; Tör M; Jackson S; Shi N; Hong Y
    Funct Integr Genomics; 2022 Jun; 22(3):423-428. PubMed ID: 35267109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Way Junction-Induced Isothermal Amplification with High Signal-to-Background Ratio for Detection of Pathogenic Bacteria.
    Kim JH; Kim S; Hwang SH; Yoon TH; Park JS; Lee ES; Woo J; Park KS
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach.
    Ketterer S; Fuchs D; Weber W; Meier M
    Nucleic Acids Res; 2015 Oct; 43(19):9564-72. PubMed ID: 26400180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI.
    Fernandez-Millan P; Autour A; Ennifar E; Westhof E; Ryckelynck M
    RNA; 2017 Dec; 23(12):1788-1795. PubMed ID: 28939697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinach RNA aptamer detects lead(II) with high selectivity.
    DasGupta S; Shelke SA; Li NS; Piccirilli JA
    Chem Commun (Camb); 2015 May; 51(43):9034-7. PubMed ID: 25940073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.