These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25354358)

  • 1. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems.
    Parker DS; Kaiser RI; Troy TP; Kostko O; Ahmed M; Mebel AM
    J Phys Chem A; 2015 Jul; 119(28):7145-54. PubMed ID: 25354358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reaction of phenyl radical with molecular oxygen: a G2M study of the potential energy surface.
    Tokmakov IV; Kim GS; Kislov VV; Mebel AM; Lin MC
    J Phys Chem A; 2005 Jul; 109(27):6114-27. PubMed ID: 16833949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.
    da Silva G; Bozzelli JW
    Phys Chem Chem Phys; 2012 Dec; 14(46):16143-54. PubMed ID: 23108328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames.
    Mebel AM; Landera A; Kaiser RI
    J Phys Chem A; 2017 Feb; 121(5):901-926. PubMed ID: 28072538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction dynamics of phenyl radicals in extreme environments: a crossed molecular beam study.
    Gu X; Kaiser RI
    Acc Chem Res; 2009 Feb; 42(2):290-302. PubMed ID: 19053235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to add a five-membered ring to polycyclic aromatic hydrocarbons (PAHs) - molecular mass growth of the 2-naphthyl radical (C
    Zhao L; Prendergast M; Kaiser RI; Xu B; Ablikim U; Lu W; Ahmed M; Oleinikov AD; Azyazov VN; Howlader AH; Wnuk SF; Mebel AM
    Phys Chem Chem Phys; 2019 Aug; 21(30):16737-16750. PubMed ID: 31322639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental and theoretical study on the formation of 2-methylnaphthalene (C11H10/C11H3D7) in the reactions of the para-tolyl (C7H7) and para-tolyl-d7 (C7D7) with vinylacetylene (C4H4).
    Parker DS; Dangi BB; Kaiser RI; Jamal A; Ryazantsev MN; Morokuma K; Korte A; Sander W
    J Phys Chem A; 2014 Apr; 118(15):2709-18. PubMed ID: 24646186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Formation of Indene through the Reaction of Benzyl Radicals with Acetylene.
    Parker DS; Kaiser RI; Kostko O; Ahmed M
    Chemphyschem; 2015 Jul; 16(10):2091-3. PubMed ID: 25917234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.
    Comandini A; Malewicki T; Brezinsky K
    J Phys Chem A; 2012 Mar; 116(10):2409-34. PubMed ID: 22339468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time- and Isomer-Resolved Measurements of Sequential Addition of Acetylene to the Propargyl Radical.
    Savee JD; Selby TM; Welz O; Taatjes CA; Osborn DL
    J Phys Chem Lett; 2015 Oct; 6(20):4153-8. PubMed ID: 26722791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and stability of gas-phase o-benzoquinone from oxidation of ortho-hydroxyphenyl: a combined neutral and distonic radical study.
    Prendergast MB; Kirk BB; Savee JD; Osborn DL; Taatjes CA; Masters KS; Blanksby SJ; da Silva G; Trevitt AJ
    Phys Chem Chem Phys; 2016 Feb; 18(6):4320-32. PubMed ID: 26509247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic insights into benzene oxidation over CuMn
    Zhao L; Yang Y; Liu J; Ding J
    J Hazard Mater; 2022 Jun; 431():128640. PubMed ID: 35359105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Susa A; Miyoshi A; Koshi M
    J Phys Chem A; 2008 Mar; 112(11):2362-9. PubMed ID: 18298104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected chemistry from the reaction of naphthyl and acetylene at combustion-like temperatures.
    Parker DS; Kaiser RI; Bandyopadhyay B; Kostko O; Troy TP; Ahmed M
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5421-4. PubMed ID: 25752687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry.
    Li Y; Qi F
    Acc Chem Res; 2010 Jan; 43(1):68-78. PubMed ID: 19705821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the formation of naphthalene from the radical/π-bond addition between single-ring aromatic hydrocarbons.
    Comandini A; Brezinsky K
    J Phys Chem A; 2011 Jun; 115(22):5547-59. PubMed ID: 21557589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the formation of cyclopentadiene in the C3H5˙ + C2H2 reaction.
    Bouwman J; Bodi A; Oomens J; Hemberger P
    Phys Chem Chem Phys; 2015 Aug; 17(32):20508-14. PubMed ID: 26086435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A VUV photoionization study of the combustion-relevant reaction of the phenyl radical (C6H5) with propylene (C3H6) in a high temperature chemical reactor.
    Zhang F; Kaiser RI; Golan A; Ahmed M; Hansen N
    J Phys Chem A; 2012 Apr; 116(14):3541-6. PubMed ID: 22390714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction dynamics in astrochemistry: low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium.
    Kaiser RI; Parker DS; Mebel AM
    Annu Rev Phys Chem; 2015 Apr; 66():43-67. PubMed ID: 25422849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.