These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25354362)

  • 1. Plasmonic enhancement of dye sensitized solar cells via a tailored size-distribution of chemically functionalized gold nanoparticles.
    Andrei C; Lestini E; Crosbie S; de Frein C; O'Reilly T; Zerulla D
    PLoS One; 2014; 9(10):e109836. PubMed ID: 25354362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells.
    Liu WL; Lin FC; Yang YC; Huang CH; Gwo S; Huang MH; Huang JS
    Nanoscale; 2013 Sep; 5(17):7953-62. PubMed ID: 23860734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic enhancement of betanin-lawsone co-sensitized solar cells via tailored bimodal size distribution of silver nanoparticles.
    Sreeja S; Pesala B
    Sci Rep; 2020 May; 10(1):8240. PubMed ID: 32427922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of ruthenium dye sensitised solar cells efficiency via Sn diffusion into the TiO2 mesoporous layer.
    Andrei C; Zerulla D
    PLoS One; 2013; 8(5):e63923. PubMed ID: 23704956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous submicrometer TiO(2) hollow spheres as scatterers in dye-sensitized solar cells.
    Dadgostar S; Tajabadi F; Taghavinia N
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2964-8. PubMed ID: 22606936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Gold Nanoparticle Distribution in TiO
    Mayumi S; Ikeguchi Y; Nakane D; Ishikawa Y; Uraoka Y; Ikeguchi M
    Nanoscale Res Lett; 2017 Aug; 12(1):513. PubMed ID: 28853056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Solar Efficiency via Incorporation of Plasmonic Gold Nanostructures in a Titanium Oxide/Eosin Y Dye-Sensitized Solar Cell.
    Nyembe S; Chindeka F; Ndlovu G; Mkhohlakali A; Nyokong T; Sikhwivhilu L
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled near- and far-field scattering in silver nanoparticles for high-efficiency, stable, and thin plasmonic dye-sensitized solar cells.
    Adhyaksa GW; Baek SW; Lee GI; Lee DK; Lee JY; Kang JK
    ChemSusChem; 2014 Sep; 7(9):2461-8. PubMed ID: 24919576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of dye-particle spacing.
    Kawawaki T; Takahashi Y; Tatsuma T
    Nanoscale; 2011 Jul; 3(7):2865-7. PubMed ID: 21681292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial photosynthesis based on ruthenium(II) tetrazole-dye-sensitized nanocrystalline TiO2 solar cells.
    Shahroosvand H; Najafi L; Khanmirzaei L; Tarighi S
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):4-13. PubMed ID: 26028126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Performance Dye-Sensitized Solar Cells with Enhanced Light-Harvesting Efficiency Based on Polyvinylpyrrolidone-Coated Au-TiO2 Microspheres.
    Ding Y; Sheng J; Yang Z; Jiang L; Mo L; Hu L; Que Y; Dai S
    ChemSusChem; 2016 Apr; 9(7):720-7. PubMed ID: 26915757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-Induced Broadband Light-Harvesting for Dye-Sensitized Solar Cells Using a Mixture of Gold Nanocrystals.
    Zhang Y; Sun Z; Cheng S; Yan F
    ChemSusChem; 2016 Apr; 9(8):813-9. PubMed ID: 27110902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO
    Dong YX; Cao JT; Liu YM; Ma SH
    Biosens Bioelectron; 2017 May; 91():246-252. PubMed ID: 28013019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Performance of Dye Sensitized Solar Cells Using Silver Nanoparticles Modified Photoanode.
    Saadmim F; Forhad T; Sikder A; Ghann W; M Ali M; Sitther V; Ahammad AJS; Subhan MA; Uddin J
    Molecules; 2020 Sep; 25(17):. PubMed ID: 32899213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of multi-porous layer for dye-sensitized solar cells by doping with TiO2 nanoparticles.
    Hsieh TL; Chu AK; Huang WY
    J Nanosci Nanotechnol; 2013 Jan; 13(1):365-9. PubMed ID: 23646739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO
    Cai G; Yu Z; Ren R; Tang D
    ACS Sens; 2018 Mar; 3(3):632-639. PubMed ID: 29465232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of surface plasmon resonance and constructed hierarchical TiO2 spheres for dye-sensitized solar cells.
    Liu Y; Zhai H; Guo F; Huang N; Sun W; Bu C; Peng T; Yuan J; Zhao X
    Nanoscale; 2012 Nov; 4(21):6863-9. PubMed ID: 23023266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles.
    Brown MD; Suteewong T; Kumar RS; D'Innocenzo V; Petrozza A; Lee MM; Wiesner U; Snaith HJ
    Nano Lett; 2011 Feb; 11(2):438-45. PubMed ID: 21194204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting the Efficiency of Dye-Sensitized Solar Cells by a Multifunctional Composite Photoanode to 14.13 .
    Zhang S; Huang F; Guo X; Xiong Y; Huang Y; Ågren H; Wang L; Zhang J
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202302753. PubMed ID: 37026187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency.
    Shao W; Gu F; Li C; Lu M
    Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.