These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25354445)

  • 21. Biomimetic smart interface materials for biological applications.
    Sun T; Qing G
    Adv Mater; 2011 Mar; 23(12):H57-77. PubMed ID: 21433103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane.
    Mariano A; Lubrano C; Bruno U; Ausilio C; Dinger NB; Santoro F
    Chem Rev; 2022 Feb; 122(4):4552-4580. PubMed ID: 34582168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility.
    Solouk A; Cousins BG; Mirahmadi F; Mirzadeh H; Nadoushan MR; Shokrgozar MA; Seifalian AM
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():400-8. PubMed ID: 25492004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic foldamer chemistry.
    Le Bailly BA; Clayden J
    Chem Commun (Camb); 2016 Apr; 52(27):4852-63. PubMed ID: 26955864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel polymer biomaterials and interfaces inspired from cell membrane functions.
    Ishihara K; Goto Y; Takai M; Matsuno R; Inoue Y; Konno T
    Biochim Biophys Acta; 2011 Mar; 1810(3):268-75. PubMed ID: 20435095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remote control of reversible localized protein adsorption in microfluidic devices.
    Hao N; Li JY; Xiong M; Xia XH; Xu JJ; Chen HY
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11869-73. PubMed ID: 25068799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Saccharide-dependent induction of chiral helicity in achiral synthetic hydrogen-bonding oligomers.
    Inouye M; Waki M; Abe H
    J Am Chem Soc; 2004 Feb; 126(7):2022-7. PubMed ID: 14971935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a dynamic polymer interface for chiral discrimination.
    Shundo A; Hori K; Ikeda T; Kimizuka N; Tanaka K
    J Am Chem Soc; 2013 Jul; 135(28):10282-5. PubMed ID: 23808906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic porous properties of coordination polymers inspired by hydrogen bonds.
    Kitagawa S; Uemura K
    Chem Soc Rev; 2005 Feb; 34(2):109-19. PubMed ID: 15672175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-inspired hierarchical polymer design: electrostatics and hydrogen bonding in concert.
    Hemp ST; Long TE
    Macromol Biosci; 2012 Jan; 12(1):29-39. PubMed ID: 22173995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordination chemistry strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates.
    Miyake H; Tsukube H
    Chem Soc Rev; 2012 Nov; 41(21):6977-91. PubMed ID: 22850749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Denture materials and acrylic base materials.
    Craig RG
    Curr Opin Dent; 1991 Apr; 1(2):235-43. PubMed ID: 1777672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using mesoscopic models to design strong and tough biomimetic polymer networks.
    Salib IG; Kolmakov GV; Bucior BJ; Peleg O; Kröger M; Savin T; Vogel V; Matyjaszewski K; Balazs AC
    Langmuir; 2011 Nov; 27(22):13796-805. PubMed ID: 21977962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Helix formation in synthetic polymers by hydrogen bonding with native saccharides in protic media.
    Waki M; Abe H; Inouye M
    Chemistry; 2006 Oct; 12(30):7839-47. PubMed ID: 16847986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulating cell fate: dynamic control of cell behaviors on functional platforms.
    Li W; Yan Z; Ren J; Qu X
    Chem Soc Rev; 2018 Nov; 47(23):8639-8684. PubMed ID: 30283962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics.
    Li P; Kim S; Tian B
    ACS Nano; 2022 Dec; 16(12):19651-19664. PubMed ID: 36516872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces.
    Hori K; Yoshimoto S; Yoshino T; Zako T; Hirao G; Fujita S; Nakamura C; Yamagishi A; Kamiya N
    J Biosci Bioeng; 2022 Mar; 133(3):195-207. PubMed ID: 34998688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.
    Yang W; Chen Y; Wong MS; Lo PK
    Biomacromolecules; 2012 Oct; 13(10):3370-6. PubMed ID: 22920647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinspired super-wettability from fundamental research to practical applications.
    Wen L; Tian Y; Jiang L
    Angew Chem Int Ed Engl; 2015 Mar; 54(11):3387-99. PubMed ID: 25614018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.