These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25354662)

  • 1. β-Glucosidase involvement in the bioactivation of glycosyl conjugates in plants: synthesis and metabolism of four glycosidic bond conjugates in vitro and in vivo.
    Xia Q; Wen YJ; Wang H; Li YF; Xu HH
    J Agric Food Chem; 2014 Nov; 62(46):11037-46. PubMed ID: 25354662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of glucose-fipronil conjugate and its phloem mobility.
    Yang W; Wu HX; Xu HH; Hu AL; Lu ML
    J Agric Food Chem; 2011 Dec; 59(23):12534-42. PubMed ID: 22029402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose positions affect the phloem mobility of glucose-fipronil conjugates.
    Lei Z; Wang J; Mao G; Wen Y; Tian Y; Wu H; Li Y; Xu H
    J Agric Food Chem; 2014 Jul; 62(26):6065-71. PubMed ID: 24918526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of new glycosyl-O-fipronil conjugates with improved hydrolysis efficiency assisted by molecular simulations.
    Wang B; Yang C; Jiang X; Wen Y; Tian Y; Zhao C; Xu H
    Pest Manag Sci; 2022 Jun; 78(6):2667-2678. PubMed ID: 35365912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The linker length of glucose-fipronil conjugates has a major effect on the rate of bioactivation by β-glucosidase.
    Wen Y; Jiang X; Yang C; Meng H; Wang B; Wu H; Zhang Z; Xu H
    Pest Manag Sci; 2019 Mar; 75(3):708-717. PubMed ID: 30182531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a series of monosaccharide-fipronil conjugates and their phloem mobility.
    Yuan JG; Wu HX; Lu ML; Song GP; Xu HH
    J Agric Food Chem; 2013 May; 61(18):4236-41. PubMed ID: 23586601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fluorescent conjugate applicable to visualize the translocation of glucose-fipronil.
    Wang J; Lei Z; Wen Y; Mao G; Wu H; Xu H
    J Agric Food Chem; 2014 Sep; 62(35):8791-8. PubMed ID: 25134020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and phloem transport of glucose-fipronil conjugate in Ricinus communis involve a carrier-mediated mechanism.
    Wu HX; Yang W; Zhang ZX; Huang T; Yao GK; Xu HH
    J Agric Food Chem; 2012 Jun; 60(24):6088-94. PubMed ID: 22587652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of rotenone-O-monosaccharide derivatives and their phloem mobility.
    Qin PW; Wang J; Wang H; Wen YJ; Lu ML; Li YF; Xu YS; Xu HH
    J Agric Food Chem; 2014 May; 62(20):4521-7. PubMed ID: 24780074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel amino acid ester-chlorantraniliprole conjugates: design, synthesis, phloem accumulation and bioactivity.
    Yao G; Wen Y; Zhao C; Xu H
    Pest Manag Sci; 2017 Oct; 73(10):2131-2137. PubMed ID: 28432729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phloem mobility and translocation of fluorescent conjugate containing glucose and NBD in castor bean (Ricinus communis).
    Lei Z; Wang J; Mao G; Wen Y; Xu H
    J Photochem Photobiol B; 2014 Mar; 132():10-6. PubMed ID: 24561186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Pyranose and Spacer Arm Structures on Phloem Mobility and Insecticidal Activity of New Tralopyril Derivatives.
    Chen Y; Lei ZW; Zhang Y; Yang W; Liu HF; Zhou YF; Yang MF
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28672840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, bioactivities and phloem uptake of dipeptide-chlorantraniliprole derivatives.
    Zheng S; Lin X; Wu H; Zhao C; Xu H
    BMC Chem; 2020 Dec; 14(1):22. PubMed ID: 32259134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vectorizing Pro-Insecticide: Influence of Linker Length on Insecticidal Activity and Phloem Mobility of New Tralopyril Derivatives.
    Li TX; Chen Y; Liu HF; Ma CY; Yang W
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major.
    Pankoke H; Buschmann T; Müller C
    Phytochemistry; 2013 Oct; 94():99-107. PubMed ID: 23773298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of rice (Oryza sativa L.) Os4BGlu12, an oligosaccharide and tuberonic acid glucoside-hydrolyzing β-glucosidase with significant thioglucohydrolase activity.
    Sansenya S; Opassiri R; Kuaprasert B; Chen CJ; Cairns JR
    Arch Biochem Biophys; 2011 Jun; 510(1):62-72. PubMed ID: 21521631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of aminooxy glycosides to glycosidase catalysed hydrolysis.
    Iqbal A; Chibli H; Hamilton CJ
    Carbohydr Res; 2013 Aug; 377():1-3. PubMed ID: 23764956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-phenylglucosylamine hydrolysis: a mechanistic probe of β-glucosidase.
    Na Y; Shen H; Byers LD
    Bioorg Chem; 2011 Jun; 39(3):111-3. PubMed ID: 21435675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of introducing theanine or glutamic acid core to tralopyril on systemicity and insecticidal activity.
    Yang W; Chen Y; Zhang Y; Gao XB; Zhou YF
    Pestic Biochem Physiol; 2017 Sep; 141():29-40. PubMed ID: 28911738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose tolerant and glucose stimulated β-glucosidases - A review.
    Salgado JCS; Meleiro LP; Carli S; Ward RJ
    Bioresour Technol; 2018 Nov; 267():704-713. PubMed ID: 30093225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.