These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25354711)

  • 21. Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems.
    Tian F; Sumikura H; Kuramochi E; Taniyama H; Takiguchi M; Notomi M
    Opt Express; 2016 Nov; 24(24):28039-28055. PubMed ID: 27906370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators.
    Wu J; Huang SW; Huang Y; Zhou H; Yang J; Liu JM; Yu M; Lo G; Kwong DL; Duan S; Wei Wong C
    Nat Commun; 2017 Jun; 8():15570. PubMed ID: 28598426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz.
    Huang SW; Yang J; Lim J; Zhou H; Yu M; Kwong DL; Wong CW
    Sci Rep; 2015 Aug; 5():13355. PubMed ID: 26311406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low phase-noise sapphire crystal microwave oscillators: current status.
    Ivanov EN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):263-9. PubMed ID: 19251513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controllable optomechanical coupling and Drude self-pulsation plasma locking in chip-scale optomechanical cavities.
    Huang Y; Flores JG; Cai Z; Wu J; Yu M; Kwong DL; Wen G; Churchill L; Wong CW
    Opt Express; 2017 Mar; 25(6):6851-6859. PubMed ID: 28381027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding of Phase Noise Squeezing Under Fractional Synchronization of a Nonlinear Spin Transfer Vortex Oscillator.
    Lebrun R; Jenkins A; Dussaux A; Locatelli N; Tsunegi S; Grimaldi E; Kubota H; Bortolotti P; Yakushiji K; Grollier J; Fukushima A; Yuasa S; Cros V
    Phys Rev Lett; 2015 Jul; 115(1):017201. PubMed ID: 26182117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):707-15. PubMed ID: 16615574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. State-of-the-art RF signal generation from optical frequency division.
    Hati A; Nelson CW; Barnes C; Lirette D; Fortier T; Quinlan F; DeSalvo JA; Ludlow A; Diddams SA; Howe DA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1796-803. PubMed ID: 24658712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.
    Roy S; Ramiah H; Reza AW; Lim CC; Ferrer EM
    PLoS One; 2016; 11(7):e0158954. PubMed ID: 27391136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits.
    Huang Y; Flores JGF; Li Y; Wang W; Wang D; Goldberg N; Zheng J; Yu M; Lu M; Kutzer M; Rogers D; Kwong DL; Churchill L; Wong CW
    Laser Photon Rev; 2020 May; 14(5):. PubMed ID: 34712367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chip-scale cavity optomechanics in lithium niobate.
    Jiang WC; Lin Q
    Sci Rep; 2016 Nov; 6():36920. PubMed ID: 27841301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip.
    Wang J; Shen H; Fan L; Wu R; Niu B; Varghese LT; Xuan Y; Leaird DE; Wang X; Gan F; Weiner AM; Qi M
    Nat Commun; 2015 Jan; 6():5957. PubMed ID: 25581847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optomechanical Generation of Coherent GHz Vibrations in a Phononic Waveguide.
    Madiot G; Ng RC; Arregui G; Florez O; Albrechtsen M; Stobbe S; García PD; Sotomayor-Torres CM
    Phys Rev Lett; 2023 Mar; 130(10):106903. PubMed ID: 36962028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid radio-intermediate-frequency oscillator with photonic-delay-matched frequency conversion pair.
    Dai Y; Wang R; Yin F; Dai J; Zhou Y; Li J; Xu K
    Opt Lett; 2015 Jun; 40(12):2894-7. PubMed ID: 26076289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lithium-niobate-based surface acoustic wave oscillator directly integrated with CMOS sustaining amplifier.
    Tanaka S; Park K; Esashi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1800-5. PubMed ID: 22899126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-voltage high-performance silicon photonic devices and photonic integrated circuits operating up to 30 Gb/s.
    Kim G; Park JW; Kim IG; Kim S; Kim S; Lee JM; Park GS; Joo J; Jang KS; Oh JH; Kim SA; Kim JH; Lee JY; Park JM; Kim DW; Jeong DK; Hwang MS; Kim JK; Park KS; Chi HK; Kim HC; Kim DW; Cho MH
    Opt Express; 2011 Dec; 19(27):26936-47. PubMed ID: 22274277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Injection locking of optomechanical oscillators via acoustic waves.
    Huang K; Hossein-Zadeh M
    Opt Express; 2018 Apr; 26(7):8275-8288. PubMed ID: 29715796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optomechanical and photothermal interactions in suspended photonic crystal membranes.
    Woolf D; Hui PC; Iwase E; Khan M; Rodriguez AW; Deotare P; Bulu I; Johnson SG; Capasso F; Loncar M
    Opt Express; 2013 Mar; 21(6):7258-75. PubMed ID: 23546110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.