These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 25354836)

  • 41. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals.
    Xu X; Asher SA
    J Am Chem Soc; 2004 Jun; 126(25):7940-5. PubMed ID: 15212543
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and characterization of core-shell microspheres with double thermosensitivity.
    Chen Y; Gautrot JE; Zhu XX
    Langmuir; 2007 Jan; 23(3):1047-51. PubMed ID: 17241012
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Double-walled hollow polymeric microspheres with independent pH and temperature dual-responsive and magnetic-targeting function from onion-shaped core-shell structures.
    Du P; Wang T; Liu P
    Colloids Surf B Biointerfaces; 2013 Feb; 102():1-8. PubMed ID: 22995074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and characterization of N-isopropylacrylamide/acrylic acid copolymer core-shell microgel particles.
    Khan A
    J Colloid Interface Sci; 2007 Sep; 313(2):697-704. PubMed ID: 17561067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Schizophrenic core-shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions.
    Yin J; Hu J; Zhang G; Liu S
    Langmuir; 2014 Mar; 30(9):2551-8. PubMed ID: 24555801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assembly and functionalization of DNA-polymer microcapsules.
    Cavalieri F; Postma A; Lee L; Caruso F
    ACS Nano; 2009 Jan; 3(1):234-40. PubMed ID: 19206271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unexpected cononsolvency behavior of poly (N-isopropylacrylamide)-based microgels.
    Heppner IN; Islam MR; Serpe MJ
    Macromol Rapid Commun; 2013 Nov; 34(21):1708-13. PubMed ID: 24108519
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reversible gelation of rod-like viruses grafted with thermoresponsive polymers.
    Zhang Z; Krishna N; Lettinga MP; Vermant J; Grelet E
    Langmuir; 2009 Feb; 25(4):2437-42. PubMed ID: 19166277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermo- and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release.
    Li G; Guo L; Wen Q; Zhang T
    Int J Biol Macromol; 2013 Apr; 55():69-74. PubMed ID: 23313823
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature-Induced Assembly of Monodisperse, Covalently Cross-Linked, and Degradable Poly(N-isopropylacrylamide) Microgels Based on Oligomeric Precursors.
    Sivakumaran D; Mueller E; Hoare T
    Langmuir; 2015 Jun; 31(21):5767-78. PubMed ID: 25977976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Double-stimuli-responsive spherical polymer brushes with a poly(ionic liquid) core and a thermoresponsive shell.
    Men Y; Drechsler M; Yuan J
    Macromol Rapid Commun; 2013 Nov; 34(21):1721-7. PubMed ID: 24186465
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of nanogel core-silica shell and hollow silica nanoparticles via an interfacial sol-gel process triggered by transition-metal salt in inverse systems.
    Cao Z; Yang L; Yan Y; Shang Y; Ye Q; Qi D; Ziener U; Shan G; Landfester K
    J Colloid Interface Sci; 2013 Sep; 406():139-47. PubMed ID: 23810544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery.
    Peralta ME; Jadhav SA; Magnacca G; Scalarone D; Mártire DO; Parolo ME; Carlos L
    J Colloid Interface Sci; 2019 May; 544():198-205. PubMed ID: 30844568
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: their characterization and the uptake and release of an anionic surfactant.
    Bradley M; Vincent B
    Langmuir; 2008 Mar; 24(6):2421-5. PubMed ID: 18294014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microwave, photo- and thermally responsive PNIPAm-gold nanoparticle microgels.
    Budhlall BM; Marquez M; Velev OD
    Langmuir; 2008 Oct; 24(20):11959-66. PubMed ID: 18817426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface Coassembly of Polymer Brushes and Polymer-Protein Bioconjugates: An Efficient Approach to the Purification of Bioconjugates under Mild Conditions.
    Hou W; Wei L; Liu L; Zhao H
    Biomacromolecules; 2018 Nov; 19(11):4463-4471. PubMed ID: 30339367
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tunable adsorption of soft colloids on model biomembranes.
    Mihut AM; Dabkowska AP; Crassous JJ; Schurtenberger P; Nylander T
    ACS Nano; 2013 Dec; 7(12):10752-63. PubMed ID: 24191704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Particle formation and aggregation-collapse behavior of poly(N-isopropylacrylamide) and poly(ethylene glycol) block copolymers in the presence of cross-linking agent.
    Zhu PW
    J Mater Sci Mater Med; 2004 May; 15(5):567-73. PubMed ID: 15386964
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure and polymer dynamics within PNIPAM-based microgel particles.
    Sierra-Martin B; Rubio Retama J; Laurenti M; Fernández Barbero A; López Cabarcos E
    Adv Colloid Interface Sci; 2014 Mar; 205():113-23. PubMed ID: 24275613
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmonic gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: a small angle scattering study.
    Dulle M; Jaber S; Rosenfeldt S; Radulescu A; Förster S; Mulvaney P; Karg M
    Phys Chem Chem Phys; 2015 Jan; 17(2):1354-67. PubMed ID: 25425290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.