BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25355271)

  • 1. The intergenic transcribed spacer region 1 as a molecular marker for identification and discrimination of Enterobacteriaceae associated with acute oak decline.
    Doonan J; Denman S; Gertler C; Pachebat JA; Golyshin PN; McDonald JE
    J Appl Microbiol; 2015 Jan; 118(1):193-201. PubMed ID: 25355271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid identification of bacteria associated with Acute Oak Decline by high-resolution melt analysis.
    Brady C; Allainguillaume J; Denman S; Arnold D
    Lett Appl Microbiol; 2016 Aug; 63(2):89-95. PubMed ID: 27227694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival of Brenneria goodwinii and Gibbsiella quercinecans, associated with acute oak decline, in rainwater and forest soil.
    Pettifor BJ; Doonan J; Denman S; McDonald JE
    Syst Appl Microbiol; 2020 Mar; 43(2):126052. PubMed ID: 31932140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taxonomy and identification of bacteria associated with acute oak decline.
    Brady C; Arnold D; McDonald J; Denman S
    World J Microbiol Biotechnol; 2017 Jul; 33(7):143. PubMed ID: 28623563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation studies reveal a shift in the cultivable microbiome of oak affected with Acute Oak Decline.
    Denman S; Plummer S; Kirk S; Peace A; McDonald JE
    Syst Appl Microbiol; 2016 Oct; 39(7):484-490. PubMed ID: 27553488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Description of Gibbsiella quercinecans gen. nov., sp. nov., associated with Acute Oak Decline.
    Brady C; Denman S; Kirk S; Venter S; Rodríguez-Palenzuela P; Coutinho T
    Syst Appl Microbiol; 2010 Dec; 33(8):444-50. PubMed ID: 21115313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brenneria goodwinii sp. nov., associated with acute oak decline in the UK.
    Denman S; Brady C; Kirk S; Cleenwerck I; Venter S; Coutinho T; De Vos P
    Int J Syst Evol Microbiol; 2012 Oct; 62(Pt 10):2451-2456. PubMed ID: 22140177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic analysis of bacteria in the Acute Oak Decline pathobiome.
    Doonan J; Denman S; Pachebat JA; McDonald JE
    Microb Genom; 2019 Jan; 5(1):. PubMed ID: 30625111
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Brady C; Orsi M; Doonan JM; Denman S; Arnold D
    Curr Res Microb Sci; 2022; 3():100102. PubMed ID: 35005660
    [No Abstract]   [Full Text] [Related]  

  • 10. Description of Brenneria roseae sp. nov. and two subspecies, Brenneria roseae subspecies roseae ssp. nov and Brenneria roseae subspecies americana ssp. nov. isolated from symptomatic oak.
    Brady C; Hunter G; Kirk S; Arnold D; Denman S
    Syst Appl Microbiol; 2014 Sep; 37(6):396-401. PubMed ID: 24917366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated multi-omic analysis of host-microbiota interactions in acute oak decline.
    Broberg M; Doonan J; Mundt F; Denman S; McDonald JE
    Microbiome; 2018 Jan; 6(1):21. PubMed ID: 29378627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gibbsiella greigii sp. nov., a novel species associated with oak decline in the USA.
    Brady C; Hunter G; Kirk S; Arnold D; Denman S
    Syst Appl Microbiol; 2014 Sep; 37(6):417-22. PubMed ID: 25107271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilocus sequence typing provides insights into the population structure and evolutionary potential of Brenneria goodwinii, associated with acute oak decline.
    Kaczmarek M; Mullett MS; McDonald JE; Denman S
    PLoS One; 2017; 12(6):e0178390. PubMed ID: 28570630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline.
    Denman S; Doonan J; Ransom-Jones E; Broberg M; Plummer S; Kirk S; Scarlett K; Griffiths AR; Kaczmarek M; Forster J; Peace A; Golyshin PN; Hassard F; Brown N; Kenny JG; McDonald JE
    ISME J; 2018 Feb; 12(2):386-399. PubMed ID: 29028005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gibbsiella dentisursi sp. nov., isolated from the bear oral cavity.
    Saito M; Shinozaki-Kuwahara N; Takada K
    Microbiol Immunol; 2012 Aug; 56(8):506-12. PubMed ID: 22500952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.
    Geider K; Gernold M; Jock S; Wensing A; Völksch B; Gross J; Spiteller D
    Microbiol Res; 2015 Dec; 181():93-104. PubMed ID: 26071988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprint of New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes.
    Gürtler V; Grando D
    J Microbiol Methods; 2013 Dec; 95(3):425-40. PubMed ID: 24050948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Bacteria in Acute Oak Decline in South-West Poland.
    Tkaczyk M; Sikora K
    Microorganisms; 2024 May; 12(5):. PubMed ID: 38792825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA based classification of food associated Enterobacteriaceae previously identified by Biolog GN Microplates.
    Olsson C; Ahrné S; Pettersson B; Molin G
    Syst Appl Microbiol; 2004 Mar; 27(2):219-28. PubMed ID: 15046311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rrn locus and gyrB genotyping confirm the existence of two clonal groups in strains of Yersinia enterocolitica subspecies palearctica biovar 1A.
    Gulati PS; Virdi JS
    Res Microbiol; 2007 Apr; 158(3):236-43. PubMed ID: 17349780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.