These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25355569)

  • 1. Urinary proteins with post-translational modifications.
    Liu L; Liu X
    Adv Exp Med Biol; 2015; 845():59-65. PubMed ID: 25355569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unrestrictive identification of post-translational modifications in the urine proteome without enrichment.
    Liu L; Liu X; Sun W; Li M; Gao Y
    Proteome Sci; 2013 Jan; 11(1):1. PubMed ID: 23317149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Software eyes for protein post-translational modifications.
    Na S; Paek E
    Mass Spectrom Rev; 2015; 34(2):133-47. PubMed ID: 24889695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in purification and separation of posttranslationally modified proteins.
    Černý M; Skalák J; Cerna H; Brzobohatý B
    J Proteomics; 2013 Oct; 92():2-27. PubMed ID: 23777897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Identification of Protein Post-translational Modifications in a Single-Pass Database Search.
    Shortreed MR; Wenger CD; Frey BL; Sheynkman GM; Scalf M; Keller MP; Attie AD; Smith LM
    J Proteome Res; 2015 Nov; 14(11):4714-20. PubMed ID: 26418581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting Alzheimer's Disease Molecular Substrates by Proteomics and Discovery of Novel Post-translational Modifications.
    Deolankar SC; Patil AH; Koyangana SG; Subbannayya Y; Prasad TSK; Modi PK
    OMICS; 2019 Jul; 23(7):350-361. PubMed ID: 31225774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast multi-blind modification search through tandem mass spectrometry.
    Na S; Bandeira N; Paek E
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.010199. PubMed ID: 22186716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic databases and tools to decipher post-translational modifications.
    Kamath KS; Vasavada MS; Srivastava S
    J Proteomics; 2011 Dec; 75(1):127-44. PubMed ID: 21983556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting Candida Pathobiology: Post-Translational Modifications on the Candida tropicalis Proteome.
    Patil AH; Datta KK; Behera SK; Kasaragod S; Pinto SM; Koyangana SG; Mathur PP; Gowda H; Pandey A; Prasad TSK
    OMICS; 2018 Aug; 22(8):544-552. PubMed ID: 30106353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonsynonymous Single-Nucleotide Variations on Some Posttranslational Modifications of Human Proteins and the Association with Diseases.
    Sun B; Zhang M; Cui P; Li H; Jia J; Li Y; Xie L
    Comput Math Methods Med; 2015; 2015():124630. PubMed ID: 26495027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unrestrictive identification of post-translational modifications through peptide mass spectrometry.
    Tanner S; Pevzner PA; Bafna V
    Nat Protoc; 2006; 1(1):67-72. PubMed ID: 17406213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-translational modifications of pancreatic fluid proteins collected via the endoscopic pancreatic function test (ePFT).
    Paulo JA; Kadiyala V; Brizard S; Banks PA; Steen H; Conwell DL
    J Proteomics; 2013 Oct; 92():216-27. PubMed ID: 23500127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The next level of complexity: crosstalk of posttranslational modifications.
    Venne AS; Kollipara L; Zahedi RP
    Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PTMD: A Database of Human Disease-associated Post-translational Modifications.
    Xu H; Wang Y; Lin S; Deng W; Peng D; Cui Q; Xue Y
    Genomics Proteomics Bioinformatics; 2018 Aug; 16(4):244-251. PubMed ID: 30244175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine.
    Li QR; Fan KX; Li RX; Dai J; Wu CC; Zhao SL; Wu JR; Shieh CH; Zeng R
    Rapid Commun Mass Spectrom; 2010 Mar; 24(6):823-32. PubMed ID: 20187088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of novel modifications by unrestrictive search of tandem mass spectra.
    Na S; Paek E
    J Proteome Res; 2009 Oct; 8(10):4418-27. PubMed ID: 19658439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics Analysis of PTM-Modified Protein Interaction Networks and Complexes.
    Woodsmith J; Stelzl U; Vinayagam A
    Methods Mol Biol; 2017; 1558():321-332. PubMed ID: 28150245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fishing the PTM proteome with chemical approaches using functional solid phases.
    Zhang Y; Zhang C; Jiang H; Yang P; Lu H
    Chem Soc Rev; 2015 Nov; 44(22):8260-87. PubMed ID: 26258179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.