BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25355938)

  • 21. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional Repressor PtvR Regulates Phenotypic Tolerance to Vancomycin in Streptococcus pneumoniae.
    Liu X; Li JW; Feng Z; Luo Y; Veening JW; Zhang JR
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484041
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Zhang Y; Zhang J; Xiao J; Wang H; Yang R; Guo X; Zheng Y; Yin Y; Zhang X
    Microbiol Spectr; 2023 Jun; 11(3):e0001223. PubMed ID: 37036382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activator role of the pneumococcal Mga-like virulence transcriptional regulator.
    Solano-Collado V; Espinosa M; Bravo A
    J Bacteriol; 2012 Aug; 194(16):4197-207. PubMed ID: 22661692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-acetylgalatosamine-Mediated Regulation of the
    Afzal M; Shafeeq S; Ahmed H; Kuipers OP
    Front Cell Infect Microbiol; 2016; 6():101. PubMed ID: 27672623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Niacin-mediated Gene Expression and Role of NiaR as a Transcriptional Repressor of
    Afzal M; Kuipers OP; Shafeeq S
    Front Cell Infect Microbiol; 2017; 7():70. PubMed ID: 28337428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the ROK-family transcriptional regulator RokA of Streptococcus pneumoniae D39.
    Shafeeq S; Kloosterman TG; Rajendran V; Kuipers OP
    Microbiology (Reading); 2012 Dec; 158(Pt 12):2917-2926. PubMed ID: 23082033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional activation of the bkd operon of Pseudomonas putida by BkdR.
    Madhusudhan KT; Hester KL; Friend V; Sokatch JR
    J Bacteriol; 1997 Mar; 179(6):1992-7. PubMed ID: 9068646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
    Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM
    Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The promoter of the operon encoding the F0F1 ATPase of Streptococcus pneumoniae is inducible by pH.
    Martín-Galiano AJ; Ferrándiz MJ; de la Campa AG
    Mol Microbiol; 2001 Sep; 41(6):1327-38. PubMed ID: 11580837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RR06 activates transcription of spr1996 and cbpA in Streptococcus pneumoniae.
    Ma Z; Zhang JR
    J Bacteriol; 2007 Mar; 189(6):2497-509. PubMed ID: 17220227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The LicT protein acts as both a positive and a negative regulator of loci within the bgl regulon of Streptococcus mutans.
    Cote CK; Honeyman AL
    Microbiology (Reading); 2003 May; 149(Pt 5):1333-1340. PubMed ID: 12724394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional regulation of fatty acid biosynthesis in Streptococcus pneumoniae.
    Lu YJ; Rock CO
    Mol Microbiol; 2006 Jan; 59(2):551-66. PubMed ID: 16390449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain-specific impact of PsaR of Streptococcus pneumoniae on global gene expression and virulence.
    Hendriksen WT; Bootsma HJ; van Diepen A; Estevão S; Kuipers OP; de Groot R; Hermans PWM
    Microbiology (Reading); 2009 May; 155(Pt 5):1569-1579. PubMed ID: 19372167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae.
    Tan JW; Wilksch JJ; Hocking DM; Wang N; Srikhanta YN; Tauschek M; Lithgow T; Robins-Browne RM; Yang J; Strugnell RA
    J Bacteriol; 2015 May; 197(9):1659-67. PubMed ID: 25733612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter.
    Gerischer U; Segura A; Ornston LN
    J Bacteriol; 1998 Mar; 180(6):1512-24. PubMed ID: 9515921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae.
    Wu K; Xu H; Zheng Y; Wang L; Zhang X; Yin Y
    Sci Rep; 2016 Jul; 6():29255. PubMed ID: 27386955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae.
    Iyer R; Baliga NS; Camilli A
    J Bacteriol; 2005 Dec; 187(24):8340-9. PubMed ID: 16321938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae.
    Shafeeq S; Yesilkaya H; Kloosterman TG; Narayanan G; Wandel M; Andrew PW; Kuipers OP; Morrissey JA
    Mol Microbiol; 2011 Sep; 81(5):1255-70. PubMed ID: 21736642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.