These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25356065)

  • 1. Hierarchical spike coding of sound.
    Karklin Y; Ekanadham C; Simoncelli EP
    Adv Neural Inf Process Syst; 2012; 2012():3032-3040. PubMed ID: 25356065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds.
    De Angelis V; De Martino F; Moerel M; Santoro R; Hausfeld L; Formisano E
    Neuroimage; 2018 Oct; 180(Pt A):291-300. PubMed ID: 29146377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Midlevel Auditory Codes from Natural Sound Statistics.
    Młynarski W; McDermott JH
    Neural Comput; 2018 Mar; 30(3):631-669. PubMed ID: 29220308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse codes for speech predict spectrotemporal receptive fields in the inferior colliculus.
    Carlson NL; Ming VL; Deweese MR
    PLoS Comput Biol; 2012; 8(7):e1002594. PubMed ID: 22807665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Redundant Cortical Code for Speech Envelope.
    Penikis KB; Sanes DH
    J Neurosci; 2023 Jan; 43(1):93-112. PubMed ID: 36379706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The opponent channel population code of sound location is an efficient representation of natural binaural sounds.
    Młynarski W
    PLoS Comput Biol; 2015 May; 11(5):e1004294. PubMed ID: 25996373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-Dependent Coding of Time-Dependent Frequency Trajectories by Off Responses in Secondary Auditory Cortex.
    Chong KK; Anandakumar DB; Dunlap AG; Kacsoh DB; Liu RC
    J Neurosci; 2020 Jun; 40(23):4469-4482. PubMed ID: 32327533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient auditory coding.
    Smith EC; Lewicki MS
    Nature; 2006 Feb; 439(7079):978-82. PubMed ID: 16495999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of temporal sound features in the human auditory cortex.
    Nourski KV; Brugge JF
    Rev Neurosci; 2011; 22(2):187-203. PubMed ID: 21476940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical representation of natural complex sounds: effects of acoustic features and auditory object category.
    Leaver AM; Rauschecker JP
    J Neurosci; 2010 Jun; 30(22):7604-12. PubMed ID: 20519535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained firing of model central auditory neurons yields a discriminative spectro-temporal representation for natural sounds.
    Carlin MA; Elhilali M
    PLoS Comput Biol; 2013; 9(3):e1002982. PubMed ID: 23555217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of voice pitch in discharge patterns of auditory-nerve fibers.
    Miller MI; Sachs MB
    Hear Res; 1984 Jun; 14(3):257-79. PubMed ID: 6480513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient coding of time-relative structure using spikes.
    Smith E; Lewicki MS
    Neural Comput; 2005 Jan; 17(1):19-45. PubMed ID: 15563746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two stages of bandwidth scaling drives efficient neural coding of natural sounds.
    He F; Stevenson IH; Escabí MA
    PLoS Comput Biol; 2023 Feb; 19(2):e1010862. PubMed ID: 36787338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct integration of spectrally complex sounds in mouse primary auditory cortices.
    Sołyga M; Barkat TR
    Hear Res; 2022 Apr; 417():108455. PubMed ID: 35131580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex.
    Santoro R; Moerel M; De Martino F; Goebel R; Ugurbil K; Yacoub E; Formisano E
    PLoS Comput Biol; 2014 Jan; 10(1):e1003412. PubMed ID: 24391486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
    Grossberg S; Govindarajan KK; Wyse LL; Cohen MA
    Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.
    Isnard V; Taffou M; Viaud-Delmon I; Suied C
    PLoS One; 2016; 11(3):e0150313. PubMed ID: 26950589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.