These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25356514)

  • 1. Synthesis, mechanism of formation, and catalytic activity of Xantphos nickel π-complexes.
    Staudaher ND; Stolley RM; Louie J
    Chem Commun (Camb); 2014 Dec; 50(98):15577-80. PubMed ID: 25356514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenolysis of β-O-4 lignin model dimers by a ruthenium-xantphos catalyst.
    Wu A; Patrick BO; Chung E; James BR
    Dalton Trans; 2012 Aug; 41(36):11093-106. PubMed ID: 22864631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel-catalyzed sonogashira reactions of non-activated secondary alkyl bromides and iodides.
    Yi J; Lu X; Sun YY; Xiao B; Liu L
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12409-13. PubMed ID: 24115611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous hydrogenation and isomerization of 1-octene catalyzed by nickel(II) complexes with bidentate diarylphosphane ligands.
    Mooibroek TJ; Wenker EC; Smit W; Mutikainen I; Lutz M; Bouwman E
    Inorg Chem; 2013 Jul; 52(14):8190-201. PubMed ID: 23822166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positional Isomerism in the N^N Ligand: How Much Difference Does a Methyl Group Make in [Cu(P^P)(N^N)]
    Brunner F; Prescimone A; Constable EC; Housecroft CE
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32549279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model iridium hydroformylation system with the large bite angle ligand xantphos: reactivity with parahydrogen and implications for hydroformylation catalysis.
    Fox DJ; Duckett SB; Flaschenriem C; Brennessel WW; Schneider J; Gunay A; Eisenberg R
    Inorg Chem; 2006 Sep; 45(18):7197-209. PubMed ID: 16933920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorine-Substituted Arylphosphine for an NHC-Ni(I) System, Air-Stable in a Solid State but Catalytically Active in Solution.
    Matsubara K; Fujii T; Hosokawa R; Inatomi T; Yamada Y; Koga Y
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31487944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desymmetrizing Heteroleptic [Cu(P^P)(N^N)][PF
    Meyer M; Brunner F; Prescimone A; Constable EC; Housecroft CE
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33383919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis.
    Evangelio E; Rath NP; Mirica LM
    Dalton Trans; 2012 Jul; 41(26):8010-21. PubMed ID: 22517535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mono-Oxidation of Bidentate Bis-phosphines in Catalyst Activation: Kinetic and Mechanistic Studies of a Pd/Xantphos-Catalyzed C-H Functionalization.
    Ji Y; Plata RE; Regens CS; Hay M; Schmidt M; Razler T; Qiu Y; Geng P; Hsiao Y; Rosner T; Eastgate MD; Blackmond DG
    J Am Chem Soc; 2015 Oct; 137(41):13272-81. PubMed ID: 26461028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palladium-catalyzed carbonylation reactions of aryl bromides at atmospheric pressure: a general system based on Xantphos.
    Martinelli JR; Watson DA; Freckmann DM; Barder TE; Buchwald SL
    J Org Chem; 2008 Sep; 73(18):7102-7. PubMed ID: 18720970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of 1,1-disubstituted olefins via catalytic alkyne hydrothiolation/Kumada cross-coupling.
    Sabarre A; Love J
    Org Lett; 2008 Sep; 10(18):3941-4. PubMed ID: 18702501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new PC(sp(3))P ligand and its coordination chemistry with low-valent iron, cobalt and nickel complexes.
    Zhu G; Li X; Xu G; Wang L; Sun H
    Dalton Trans; 2014 Jun; 43(23):8595-8. PubMed ID: 24792994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diiron and trinuclear NiFe
    Zhao PH; Li JR; Gu XL; Jing XB; Liu XF
    J Inorg Biochem; 2020 Sep; 210():111126. PubMed ID: 32521290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel Catalysis: Synergy between Method Development and Total Synthesis.
    Standley EA; Tasker SZ; Jensen KL; Jamison TF
    Acc Chem Res; 2015 May; 48(5):1503-14. PubMed ID: 25905431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel-Catalyzed Reductive [2+2] Cycloaddition of Alkynes.
    Cañellas S; Montgomery J; Pericàs MÀ
    J Am Chem Soc; 2018 Dec; 140(50):17349-17355. PubMed ID: 30517785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bis-phosphine allene ligand: coordination chemistry and preliminary applications in catalysis.
    Vanitcha A; Damelincourt C; Gontard G; Vanthuyne N; Mouriès-Mansuy V; Fensterbank L
    Chem Commun (Camb); 2016 May; 52(41):6785-8. PubMed ID: 27104618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust nickel catalyst for cyanomethylation of aldehydes: activation of acetonitrile under base-free conditions.
    Chakraborty S; Patel YJ; Krause JA; Guan H
    Angew Chem Int Ed Engl; 2013 Jul; 52(29):7523-6. PubMed ID: 23761321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Nickel-Catalyzed Coupling Reactions and Applications in Alkene Functionalization.
    Diccianni J; Lin Q; Diao T
    Acc Chem Res; 2020 Apr; 53(4):906-919. PubMed ID: 32237734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly preorganized pyrazolate-bridged palladium(II) and nickel(II) complexes in bimetallic norbornene polymerization.
    Sachse A; Demeshko S; Dechert S; Daebel V; Lange A; Meyer F
    Dalton Trans; 2010 Apr; 39(16):3903-14. PubMed ID: 20372715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.