BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25356879)

  • 1. Effect of ammonia on the volatility of organic diacids.
    Paciga AL; Riipinen I; Pandis SN
    Environ Sci Technol; 2014 Dec; 48(23):13769-75. PubMed ID: 25356879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerosol volatility and enthalpy of sublimation of carboxylic acids.
    Salo K; Jonsson AM; Andersson PU; Hallquist M
    J Phys Chem A; 2010 Apr; 114(13):4586-94. PubMed ID: 20235543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inorganic salts on the volatility of organic acids.
    Häkkinen SA; McNeill VF; Riipinen I
    Environ Sci Technol; 2014 Dec; 48(23):13718-26. PubMed ID: 25369247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic properties of multifunctional oxygenates in atmospheric aerosols from quantum mechanics and molecular dynamics: dicarboxylic acids.
    Tong C; Blanco M; Goddard WA; Seinfeld JH
    Environ Sci Technol; 2004 Jul; 38(14):3941-9. PubMed ID: 15298204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal characterization of aminium nitrate nanoparticles.
    Salo K; Westerlund J; Andersson PU; Nielsen C; D'Anna B; Hallquist M
    J Phys Chem A; 2011 Oct; 115(42):11671-7. PubMed ID: 21910406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the hygroscopicity of oxalic acid and atmospherically relevant oxalate salts under sub- and supersaturated conditions.
    Boreddy SKR; Kawamura K
    Environ Sci Process Impacts; 2018 Jul; 20(7):1069-1080. PubMed ID: 29953162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ammonium addition (and aerosol pH) has a dramatic impact on the volatility and yield of glyoxal secondary organic aerosol.
    Ortiz-Montalvo DL; Häkkinen SA; Schwier AN; Lim YB; McNeill VF; Turpin BJ
    Environ Sci Technol; 2014; 48(1):255-62. PubMed ID: 24328102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal characteristics of oxalic acid and related SOA in the free troposphere of Mt. Hua, central China: implications for sources and formation mechanisms.
    Meng J; Wang G; Li J; Cheng C; Ren Y; Huang Y; Cheng Y; Cao J; Zhang T
    Sci Total Environ; 2014 Sep; 493():1088-97. PubMed ID: 24925591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diurnal and temporal variations of water-soluble dicarboxylic acids and related compounds in aerosols from the northern vicinity of Beijing: implication for photochemical aging during atmospheric transport.
    He N; Kawamura K; Okuzawa K; Pochanart P; Liu Y; Kanaya Y; Wang ZF
    Sci Total Environ; 2014 Nov; 499():154-65. PubMed ID: 25181047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCN activity and hygroscopic growth of organic aerosols following reactive uptake of ammonia.
    Dinar E; Anttila T; Rudich Y
    Environ Sci Technol; 2008 Feb; 42(3):793-9. PubMed ID: 18323104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of gas phase oxalic acid with ammonia and its atmospheric implications.
    Peng XQ; Liu YR; Huang T; Jiang S; Huang W
    Phys Chem Chem Phys; 2015 Apr; 17(14):9552-63. PubMed ID: 25765518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol.
    Epstein SA; Riipinen I; Donahue NM
    Environ Sci Technol; 2010 Jan; 44(2):743-8. PubMed ID: 20025284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate.
    Yu JZ; Huang XF; Xu J; Hu M
    Environ Sci Technol; 2005 Jan; 39(1):128-33. PubMed ID: 15667086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow.
    Sullivan RC; Prather KA
    Environ Sci Technol; 2007 Dec; 41(23):8062-9. PubMed ID: 18186338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of alpha- and beta-pinene.
    Bilde M; Pandis SN
    Environ Sci Technol; 2001 Aug; 35(16):3344-9. PubMed ID: 11529575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes.
    Deshmukh DK; Kawamura K; Deb MK
    Chemosphere; 2016 Oct; 161():27-42. PubMed ID: 27414241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of evaporation rates and vapor pressures of very low volatility compounds: a study of the C4-C10 and C12 dicarboxylic acids.
    Cappa CD; Lovejoy ER; Ravishankara AR
    J Phys Chem A; 2007 Apr; 111(16):3099-109. PubMed ID: 17394291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas-Particle Partitioning of Vehicle Emitted Primary Organic Aerosol Measured in a Traffic Tunnel.
    Li X; Dallmann TR; May AA; Tkacik DS; Lambe AT; Jayne JT; Croteau PL; Presto AA
    Environ Sci Technol; 2016 Nov; 50(22):12146-12155. PubMed ID: 27762132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Divergent Volatility Properties from Yield and Thermodenuder Measurements of Secondary Organic Aerosol from α-Pinene Ozonolysis.
    Saha PK; Grieshop AP
    Environ Sci Technol; 2016 Jun; 50(11):5740-9. PubMed ID: 27144815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depression of ammonia uptake to sulfuric acid aerosols by competing uptake of ambient organic gases.
    Liggio J; Li SM; Vlasenko A; Stroud C; Makar P
    Environ Sci Technol; 2011 Apr; 45(7):2790-6. PubMed ID: 21405082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.