These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 25356880)
1. Gac-mediated changes in pyrroloquinoline quinone biosynthesis enhance the antimicrobial activity of Pseudomonas fluorescens SBW25. Cheng X; van der Voort M; Raaijmakers JM Environ Microbiol Rep; 2015 Feb; 7(1):139-47. PubMed ID: 25356880 [TBL] [Abstract][Full Text] [Related]
2. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565 [TBL] [Abstract][Full Text] [Related]
3. Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. de Bruijn I; Raaijmakers JM Appl Environ Microbiol; 2009 Jul; 75(14):4753-61. PubMed ID: 19447950 [TBL] [Abstract][Full Text] [Related]
4. RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Valverde C; Heeb S; Keel C; Haas D Mol Microbiol; 2003 Nov; 50(4):1361-79. PubMed ID: 14622422 [TBL] [Abstract][Full Text] [Related]
5. The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigmaS and the stress response in Pseudomonas fluorescens Pf-5. Whistler CA; Corbell NA; Sarniguet A; Ream W; Loper JE J Bacteriol; 1998 Dec; 180(24):6635-41. PubMed ID: 9852008 [TBL] [Abstract][Full Text] [Related]
6. Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHAO. Bull CT; Duffy B; Voisard C; Défago G; Keel C; Haas D Antonie Van Leeuwenhoek; 2001 Sep; 79(3-4):327-36. PubMed ID: 11816976 [TBL] [Abstract][Full Text] [Related]
7. Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Choi O; Kim J; Kim JG; Jeong Y; Moon JS; Park CS; Hwang I Plant Physiol; 2008 Feb; 146(2):657-68. PubMed ID: 18055583 [TBL] [Abstract][Full Text] [Related]
8. Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Duffy BK; Défago G Appl Environ Microbiol; 2000 Aug; 66(8):3142-50. PubMed ID: 10919762 [TBL] [Abstract][Full Text] [Related]
9. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Schnider U; Keel C; Voisard C; Défago G; Haas D Appl Environ Microbiol; 1995 Nov; 61(11):3856-64. PubMed ID: 8526497 [TBL] [Abstract][Full Text] [Related]
10. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. Heeb S; Valverde C; Gigot-Bonnefoy C; Haas D FEMS Microbiol Lett; 2005 Feb; 243(1):251-8. PubMed ID: 15668026 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Hassan KA; Johnson A; Shaffer BT; Ren Q; Kidarsa TA; Elbourne LD; Hartney S; Duboy R; Goebel NC; Zabriskie TM; Paulsen IT; Loper JE Environ Microbiol; 2010 Apr; 12(4):899-915. PubMed ID: 20089046 [TBL] [Abstract][Full Text] [Related]
12. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Zhang XX; Rainey PB Environ Microbiol; 2008 Dec; 10(12):3284-94. PubMed ID: 18707611 [TBL] [Abstract][Full Text] [Related]
13. A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. Aarons S; Abbas A; Adams C; Fenton A; O'Gara F J Bacteriol; 2000 Jul; 182(14):3913-9. PubMed ID: 10869066 [TBL] [Abstract][Full Text] [Related]
14. Differential control of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by sigma factor RpoS and the GacS/GacA two-component regulatory system. Yan Q; Wu XG; Wei HL; Wang HM; Zhang LQ Microbiol Res; 2009; 164(1):18-26. PubMed ID: 18395434 [TBL] [Abstract][Full Text] [Related]
15. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. Heeb S; Blumer C; Haas D J Bacteriol; 2002 Feb; 184(4):1046-56. PubMed ID: 11807065 [TBL] [Abstract][Full Text] [Related]
16. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Poritsanos N; Selin C; Fernando WG; Nakkeeran S; de Kievit TR Can J Microbiol; 2006 Dec; 52(12):1177-88. PubMed ID: 17473887 [TBL] [Abstract][Full Text] [Related]
17. Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Blumer C; Heeb S; Pessi G; Haas D Proc Natl Acad Sci U S A; 1999 Nov; 96(24):14073-8. PubMed ID: 10570200 [TBL] [Abstract][Full Text] [Related]
18. A single mutation in the oprF mRNA leader confers strict translational control by the Gac/Rsm system in Pseudomonas fluorescens CHA0. Crespo MC; Valverde C Curr Microbiol; 2009 Feb; 58(2):182-8. PubMed ID: 18979131 [TBL] [Abstract][Full Text] [Related]
19. Thiamine-auxotrophic mutants of Pseudomonas fluorescens CHA0 are defective in cell-cell signaling and biocontrol factor expression. Dubuis C; Rolli J; Lutz M; Défago G; Haas D Appl Environ Microbiol; 2006 Apr; 72(4):2606-13. PubMed ID: 16597964 [TBL] [Abstract][Full Text] [Related]
20. GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Zuber S; Carruthers F; Keel C; Mattart A; Blumer C; Pessi G; Gigot-Bonnefoy C; Schnider-Keel U; Heeb S; Reimmann C; Haas D Mol Plant Microbe Interact; 2003 Jul; 16(7):634-44. PubMed ID: 12848429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]