These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25357012)

  • 1. Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting.
    Su Z; Wang L; Grigorescu S; Lee K; Schmuki P
    Chem Commun (Camb); 2014 Dec; 50(98):15561-4. PubMed ID: 25357012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of highly ordered Ta2O5 and Ta3N5 nanorod arrays by nanoimprinting and through-mask anodization.
    Li Y; Nagato K; Delaunay JJ; Kubota J; Domen K
    Nanotechnology; 2014 Jan; 25(1):014013. PubMed ID: 24334655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting.
    Zhen C; Wang L; Liu G; Lu GQ; Cheng HM
    Chem Commun (Camb); 2013 Apr; 49(29):3019-21. PubMed ID: 23463440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting.
    Li Y; Takata T; Cha D; Takanabe K; Minegishi T; Kubota J; Domen K
    Adv Mater; 2013 Jan; 25(1):125-31. PubMed ID: 22987610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.
    Mao A; Park NG; Han GY; Park JH
    Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ta
    Xu K; Chatzitakis A; Jensen IJT; Grandcolas M; Norby T
    Photochem Photobiol Sci; 2019 Apr; 18(4):837-844. PubMed ID: 30411099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem Core-Shell Si-Ta
    Narkeviciute I; Chakthranont P; Mackus AJ; Hahn C; Pinaud BA; Bent SF; Jaramillo TF
    Nano Lett; 2016 Dec; 16(12):7565-7572. PubMed ID: 27960454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface defect passivation of Ta
    Li F; Jian J; Xu Y; Liu W; Ye Q; Feng F; Li C; Jia L; Wang H
    J Chem Phys; 2020 Jul; 153(2):024705. PubMed ID: 32668911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting.
    Wang C; Hisatomi T; Minegishi T; Nakabayashi M; Shibata N; Katayama M; Domen K
    Chem Sci; 2016 Sep; 7(9):5821-5826. PubMed ID: 30034721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting.
    Seo J; Takata T; Nakabayashi M; Hisatomi T; Shibata N; Minegishi T; Domen K
    J Am Chem Soc; 2015 Oct; 137(40):12780-3. PubMed ID: 26426439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ge-mediated modification in Ta3N5 photoelectrodes with enhanced charge transport for solar water splitting.
    Feng J; Cao D; Wang Z; Luo W; Wang J; Li Z; Zou Z
    Chemistry; 2014 Dec; 20(49):16384-90. PubMed ID: 25314682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical insights into semiconductor properties of a semitransparent tantalum nitride photoanode for solar water splitting.
    Higashi T; Nishiyama H; Pihosh Y; Wakishima K; Kawase Y; Sasaki Y; Nagaoka A; Yoshino K; Takanabe K; Domen K
    Phys Chem Chem Phys; 2023 Aug; 25(30):20737-20748. PubMed ID: 37490272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layered tantalum oxynitride nanorod array carpets for efficient photoelectrochemical conversion of solar energy: experimental and DFT insights.
    Allam NK; Shaheen BS; Hafez AM
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4609-15. PubMed ID: 24666372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A redox-mediator-free solar-driven Z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst.
    Ma SS; Maeda K; Hisatomi T; Tabata M; Kudo A; Domen K
    Chemistry; 2013 Jun; 19(23):7480-6. PubMed ID: 23584996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Design of Functional Nano-Coatings: Reduction of Loss Mechanisms in Photoelectrochemical Water Splitting.
    Landsmann S; Surace Y; Trottmann M; Dilger S; Weidenkaff A; Pokrant S
    ACS Appl Mater Interfaces; 2016 May; 8(19):12149-57. PubMed ID: 27159411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells.
    Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK
    Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous Ta
    Krisna Das P; Arunachalam M; Subhash KR; Seo YJ; Ahn KS; Ha JS; Kang SH
    Dalton Trans; 2020 Nov; 49(42):15023-15033. PubMed ID: 33095219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J; Yang HB; Khoo SY; Liu B
    Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifunctional single-crystalline rutile nanorod decorated heterostructural photoanodes for efficient dye-sensitized solar cells.
    Hao F; Lin H; Zhou C; Liu Y; Li J
    Phys Chem Chem Phys; 2011 Sep; 13(35):15918-24. PubMed ID: 21826317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.