These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
768 related articles for article (PubMed ID: 25358013)
1. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania. Song A; Lu G Environ Technol; 2015; 36(9-12):1160-6. PubMed ID: 25358013 [TBL] [Abstract][Full Text] [Related]
2. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts. Li N; Descorme C; Besson M J Hazard Mater; 2007 Jul; 146(3):602-9. PubMed ID: 17513043 [TBL] [Abstract][Full Text] [Related]
3. Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid. Gaálová J; Barbier J; Rossignol S J Hazard Mater; 2010 Sep; 181(1-3):633-9. PubMed ID: 20638962 [TBL] [Abstract][Full Text] [Related]
4. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent. Liu WM; Hu YQ; Tu ST J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394 [TBL] [Abstract][Full Text] [Related]
5. Titania-Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γ-Valerolactone Yield. Ruppert AM; Grams J; Jędrzejczyk M; Matras-Michalska J; Keller N; Ostojska K; Sautet P ChemSusChem; 2015 May; 8(9):1538-47. PubMed ID: 25641864 [TBL] [Abstract][Full Text] [Related]
6. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor. Yang M; Sun Y; Xu AH; Lu XY; Du HZ; Sun CL; Li C Bull Environ Contam Toxicol; 2007 Jul; 79(1):66-70. PubMed ID: 17593307 [TBL] [Abstract][Full Text] [Related]
7. Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation. Pang HL; Zhang XH; Zhong XX; Liu B; Wei XG; Kuang YF; Chen JH J Colloid Interface Sci; 2008 Mar; 319(1):193-8. PubMed ID: 18068181 [TBL] [Abstract][Full Text] [Related]
8. Diethyl Ether Production during Catalytic Dehydration of Ethanol over Ru- and Pt- modified H-beta Zeolite Catalysts. Kamsuwan T; Praserthdam P; Jongsomjit B J Oleo Sci; 2017; 66(2):199-207. PubMed ID: 28154350 [TBL] [Abstract][Full Text] [Related]
9. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation. Liu F; Lee JY; Zhou WJ Small; 2006 Jan; 2(1):121-8. PubMed ID: 17193567 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell. Huang J; Liu Z; He C; Gan LM J Phys Chem B; 2005 Sep; 109(35):16644-9. PubMed ID: 16853117 [TBL] [Abstract][Full Text] [Related]
11. Ruthenium catalysts supported on high-surface-area zirconia for the catalytic wet oxidation of N,N-dimethyl formamide. Sun G; Xu A; He Y; Yang M; Du H; Sun C J Hazard Mater; 2008 Aug; 156(1-3):335-41. PubMed ID: 18262352 [TBL] [Abstract][Full Text] [Related]
12. Effect of CO on NO oxidation over platinum based catalysts for hybrid fast SCR process. Irfan MF; Goo JH; Kim SD; Hong SC Chemosphere; 2007 Jan; 66(1):54-9. PubMed ID: 16828142 [TBL] [Abstract][Full Text] [Related]
13. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. Yang S; Zhu W; Wang J; Chen Z J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of ammonia poisoning by addition of platinum to Ru/α-Al2 O3 for preferential CO oxidation in fuel cells. Sato K; Yagi S; Zaitsu S; Kitayama G; Kayada Y; Teramura K; Takita Y; Nagaoka K ChemSusChem; 2014 Dec; 7(12):3264-7. PubMed ID: 25351412 [TBL] [Abstract][Full Text] [Related]
15. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Nie L; Yu J; Li X; Cheng B; Liu G; Jaroniec M Environ Sci Technol; 2013 Mar; 47(6):2777-83. PubMed ID: 23438899 [TBL] [Abstract][Full Text] [Related]
16. Nanostructure and surface composition of Pt and Ru binary catalysts on polyaniline-functionalized carbon nanotubes. Lee HY; Vogel W; Chu PP Langmuir; 2011 Dec; 27(23):14654-61. PubMed ID: 21916494 [TBL] [Abstract][Full Text] [Related]
17. Relating the composition of Pt(x)Ru(100-x)/C nanoparticles to their structural aspects and electrocatalytic activities in the methanol oxidation reaction. Taufany F; Pan CJ; Lai FJ; Chou HL; Sarma LS; Rick J; Lin JM; Lee JF; Tang MT; Hwang BJ Chemistry; 2013 Jan; 19(3):905-15. PubMed ID: 23197430 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwave-assisted catalytic oxidation. Bo L; Quan X; Wang X; Chen S J Hazard Mater; 2008 Aug; 157(1):179-86. PubMed ID: 18280039 [TBL] [Abstract][Full Text] [Related]
19. Effect of the structural characteristics of binary Pt-Ru and ternary Pt-Ru-M fuel cell catalysts on the activity of ethanol electrooxidation in acid medium. Antolini E ChemSusChem; 2013 Jun; 6(6):966-73. PubMed ID: 23650220 [TBL] [Abstract][Full Text] [Related]
20. The structure and reactivity of anchored nanoparticles on a reducible support. Stone P; Smith RD; Bowker M Faraday Discuss; 2004; 125():379-90; discussion 391-407. PubMed ID: 14750682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]