These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25358052)

  • 1. Regulation of Cardiac Cell Fate by microRNAs: Implications for Heart Regeneration.
    Gama-Carvalho M; Andrade J; Brás-Rosário L
    Cells; 2014 Oct; 3(4):996-1026. PubMed ID: 25358052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression profile of microRNAs regulating proliferation and differentiation in mouse adult cardiac stem cells.
    Brás-Rosário L; Matsuda A; Pinheiro AI; Gardner R; Lopes T; Amaral A; Gama-Carvalho M
    PLoS One; 2013; 8(5):e63041. PubMed ID: 23690977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reawakening the Intrinsic Cardiac Regenerative Potential: Molecular Strategies to Boost Dedifferentiation and Proliferation of Endogenous Cardiomyocytes.
    Bongiovanni C; Sacchi F; Da Pra S; Pantano E; Miano C; Morelli MB; D'Uva G
    Front Cardiovasc Med; 2021; 8():750604. PubMed ID: 34692797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-coding RNAs in Cardiac Regeneration.
    van der Ven CFT; Hogewoning BCR; van Mil A; Sluijter JPG
    Adv Exp Med Biol; 2020; 1229():163-180. PubMed ID: 32285411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicellular Transcriptional Analysis of Mammalian Heart Regeneration.
    Quaife-Ryan GA; Sim CB; Ziemann M; Kaspi A; Rafehi H; Ramialison M; El-Osta A; Hudson JE; Porrello ER
    Circulation; 2017 Sep; 136(12):1123-1139. PubMed ID: 28733351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes.
    Zebrowski DC; Vergarajauregui S; Wu CC; Piatkowski T; Becker R; Leone M; Hirth S; Ricciardi F; Falk N; Giessl A; Just S; Braun T; Weidinger G; Engel FB
    Elife; 2015 Aug; 4():. PubMed ID: 26247711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic regulation of cardiac regeneration: roles of hypoxia, energy homeostasis, and mitochondrial dynamics.
    Sakaguchi A; Kimura W
    Curr Opin Genet Dev; 2021 Oct; 70():54-60. PubMed ID: 34130066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation.
    Jopling C; Sleep E; Raya M; Martí M; Raya A; Izpisúa Belmonte JC
    Nature; 2010 Mar; 464(7288):606-9. PubMed ID: 20336145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AP-1 Contributes to Chromatin Accessibility to Promote Sarcomere Disassembly and Cardiomyocyte Protrusion During Zebrafish Heart Regeneration.
    Beisaw A; Kuenne C; Guenther S; Dallmann J; Wu CC; Bentsen M; Looso M; Stainier DYR
    Circ Res; 2020 Jun; 126(12):1760-1778. PubMed ID: 32312172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is zebrafish heart regeneration "complete"? Lineage-restricted cardiomyocytes proliferate to pre-injury numbers but some fail to differentiate in fibrotic hearts.
    Bertozzi A; Wu CC; Nguyen PD; Vasudevarao MD; Mulaw MA; Koopman CD; de Boer TP; Bakkers J; Weidinger G
    Dev Biol; 2021 Mar; 471():106-118. PubMed ID: 33309949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cardiomyocyte proliferation during development and regeneration.
    Takeuchi T
    Dev Growth Differ; 2014 Jun; 56(5):402-9. PubMed ID: 24738847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Regulation of Heart Regeneration: An Evolutionary Tradeoff.
    Elhelaly WM; Lam NT; Hamza M; Xia S; Sadek HA
    Front Cell Dev Biol; 2016; 4():137. PubMed ID: 28018900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations.
    Leone M; Magadum A; Engel FB
    Am J Physiol Heart Circ Physiol; 2015 Oct; 309(8):H1237-50. PubMed ID: 26342071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building and re-building the heart by cardiomyocyte proliferation.
    Foglia MJ; Poss KD
    Development; 2016 Mar; 143(5):729-40. PubMed ID: 26932668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small and long non-coding RNAs in cardiac homeostasis and regeneration.
    Ounzain S; Crippa S; Pedrazzini T
    Biochim Biophys Acta; 2013 Apr; 1833(4):923-33. PubMed ID: 22951218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs and Cardiac Regeneration.
    Hodgkinson CP; Kang MH; Dal-Pra S; Mirotsou M; Dzau VJ
    Circ Res; 2015 May; 116(10):1700-11. PubMed ID: 25953925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of microRNAs in cardiac development and regenerative capacity.
    Katz MG; Fargnoli AS; Kendle AP; Hajjar RJ; Bridges CR
    Am J Physiol Heart Circ Physiol; 2016 Mar; 310(5):H528-41. PubMed ID: 26702142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resetting the epigenome for heart regeneration.
    Quaife-Ryan GA; Sim CB; Porrello ER; Hudson JE
    Semin Cell Dev Biol; 2016 Oct; 58():2-13. PubMed ID: 26773213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart Regeneration.
    Shah V; Shah J
    Front Cardiovasc Med; 2022; 9():835138. PubMed ID: 35224063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of microRNA during cardiomyocyte maturation in sheep.
    Morrison JL; Zhang S; Tellam RL; Brooks DA; McMillen IC; Porrello ER; Botting KJ
    BMC Genomics; 2015 Jul; 16(1):541. PubMed ID: 26198574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.