These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 25358072)
1. Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils. Mikutta C; Mandaliev PN; Mahler N; Kotsev T; Kretzschmar R Environ Sci Technol; 2014 Nov; 48(22):13468-77. PubMed ID: 25358072 [TBL] [Abstract][Full Text] [Related]
2. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
3. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
4. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils. Whitacre S; Basta N; Stevens B; Hanley V; Anderson R; Scheckel K Chemosphere; 2017 Aug; 180():545-552. PubMed ID: 28432891 [TBL] [Abstract][Full Text] [Related]
5. The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soils. Basta NT; Foster JN; Dayton EA; Rodriguez RR; Casteel SW J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1275-81. PubMed ID: 17654147 [TBL] [Abstract][Full Text] [Related]
6. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Cui JL; Zhao YP; Li JS; Beiyuan JZ; Tsang DCW; Poon CS; Chan TS; Wang WX; Li XD Environ Pollut; 2018 Jan; 232():375-384. PubMed ID: 28966030 [TBL] [Abstract][Full Text] [Related]
7. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
8. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature. Simmler M; Bommer J; Frischknecht S; Christl I; Kotsev T; Kretzschmar R Environ Pollut; 2017 Dec; 231(Pt 1):722-731. PubMed ID: 28850940 [TBL] [Abstract][Full Text] [Related]
9. Mineralogical Controls on the Bioaccessibility of Arsenic in Fe(III)-As(V) Coprecipitates. Ehlert K; Mikutta C; Jin Y; Kretzschmar R Environ Sci Technol; 2018 Jan; 52(2):616-627. PubMed ID: 29300080 [TBL] [Abstract][Full Text] [Related]
10. In Situ Fixation of Metal(loid)s in Contaminated Soils: A Comparison of Conventional, Opportunistic, and Engineered Soil Amendments. Mele E; Donner E; Juhasz AL; Brunetti G; Smith E; Betts AR; Castaldi P; Deiana S; Scheckel KG; Lombi E Environ Sci Technol; 2015 Nov; 49(22):13501-9. PubMed ID: 26457447 [TBL] [Abstract][Full Text] [Related]
11. Arsenic in Playground Soils from Kindergartens and Green Recreational Areas of Bratislava City (Slovakia): Occurrence and Gastric Bioaccessibility. Hiller E; Filová L; Jurkovič Ľ; Lachká L; Kulikova T; Šimurková M Arch Environ Contam Toxicol; 2018 Oct; 75(3):402-414. PubMed ID: 29770841 [TBL] [Abstract][Full Text] [Related]
12. Evolution of As speciation with depth in a soil profile with a geothermal As origin. Yang PT; Wu WJ; Hashimoto Y; Huang JH; Huang ST; Hseu ZY; Wang SL Chemosphere; 2020 Feb; 241():124956. PubMed ID: 31605996 [TBL] [Abstract][Full Text] [Related]
13. Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system. Beak DG; Basta NT; Scheckel KG; Traina SJ Environ Sci Technol; 2006 Feb; 40(4):1364-70. PubMed ID: 16572798 [TBL] [Abstract][Full Text] [Related]
14. Effects of dissolution kinetics on bioaccessible arsenic from tailings and soils. Meunier L; Koch I; Reimer KJ Chemosphere; 2011 Sep; 84(10):1378-85. PubMed ID: 21703661 [TBL] [Abstract][Full Text] [Related]
15. Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction. Cruz-Hernández Y; Ruiz-García M; Villalobos M; Romero FM; Meza-Figueroa D; Garrido F; Hernández-Alvarez E; Pi-Puig T Environ Pollut; 2018 Jun; 237():154-165. PubMed ID: 29482021 [TBL] [Abstract][Full Text] [Related]
16. Arsenic solid-phase speciation and reversible binding in long-term contaminated soils. Rahman MS; Clark MW; Yee LH; Comarmond MJ; Payne TE; Kappen P; Mokhber-Shahin L Chemosphere; 2017 Feb; 168():1324-1336. PubMed ID: 27916260 [TBL] [Abstract][Full Text] [Related]
17. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545 [TBL] [Abstract][Full Text] [Related]
18. Bioaccessible and non-bioaccessible fractions of soil arsenic. Whitacre SD; Basta NT; Dayton EA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):620-8. PubMed ID: 23442113 [TBL] [Abstract][Full Text] [Related]
19. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Smith E; Naidu R; Weber J; Juhasz AL Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842 [TBL] [Abstract][Full Text] [Related]
20. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution. Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]