BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25358294)

  • 1. Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries.
    Song J; Choo MJ; Noh H; Park JK; Kim HT
    ChemSusChem; 2014 Dec; 7(12):3341-6. PubMed ID: 25358294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.
    Xu WT; Peng HJ; Huang JQ; Zhao CZ; Cheng XB; Zhang Q
    ChemSusChem; 2015 Sep; 8(17):2892-901. PubMed ID: 26079671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Energy Capacity with Vitamin C Treated Dual-Layered Graphene-Sulfur Cathodes in Lithium-Sulfur Batteries.
    Kim JW; Ocon JD; Kim HS; Lee J
    ChemSusChem; 2015 Sep; 8(17):2883-91. PubMed ID: 25925659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized graphene-based cathode for highly reversible lithium-sulfur batteries.
    Kim JW; Ocon JD; Park DW; Lee J
    ChemSusChem; 2014 May; 7(5):1265-73. PubMed ID: 24464910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.
    Zhang B; Xiao M; Wang S; Han D; Song S; Chen G; Meng Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13174-82. PubMed ID: 25025228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.
    Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B
    ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density.
    Kang N; Lin Y; Yang L; Lu D; Xiao J; Qi Y; Cai M
    Nat Commun; 2019 Oct; 10(1):4597. PubMed ID: 31601812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.
    Chung SH; Manthiram A
    ChemSusChem; 2014 Jun; 7(6):1655-61. PubMed ID: 24700745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.
    Jin L; Huang X; Zeng G; Wu H; Morbidelli M
    Sci Rep; 2016 Sep; 6():32800. PubMed ID: 27600885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom-Up Construction of Porous Organic Frameworks with Built-In TEMPO as a Cathode for Lithium-Sulfur Batteries.
    Zhou B; Hu X; Zeng G; Li S; Wen Z; Chen L
    ChemSusChem; 2017 Jul; 10(14):2955-2961. PubMed ID: 28557296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG; Wang X; Mayes RT; Dai S
    ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-Doped Mesoporous Carbon: A Top-Down Strategy to Promote Sulfur Immobilization for Lithium-Sulfur Batteries.
    Zhao X; Liu Y; Manuel J; Chauhan GS; Ahn HJ; Kim KW; Cho KK; Ahn JH
    ChemSusChem; 2015 Oct; 8(19):3234-41. PubMed ID: 26336933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.
    Fu Y; Su YS; Manthiram A
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6046-52. PubMed ID: 23092250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries.
    Zeng S; Li L; Xie L; Zhao D; Wang N; Chen S
    ChemSusChem; 2017 Sep; 10(17):3378-3386. PubMed ID: 28736985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.
    Zhao C; Liu L; Zhao H; Krall A; Wen Z; Chen J; Hurley P; Jiang J; Li Y
    Nanoscale; 2014 Jan; 6(2):882-8. PubMed ID: 24270510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.
    Guo J; Xu Y; Wang C
    Nano Lett; 2011 Oct; 11(10):4288-94. PubMed ID: 21928817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.