BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25358487)

  • 21. Optimizing the removal of nitrate from aqueous solutions via reduced graphite oxide-supported nZVI: synthesis, characterization, kinetics, and reduction mechanism.
    Pu S; Deng D; Wang K; Wang M; Zhang Y; Shangguan L; Chu W
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3932-3945. PubMed ID: 30547335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.
    Dong H; Zeng G; Zhang C; Liang J; Ahmad K; Xu P; He X; Lai M
    J Environ Sci (China); 2015 Jun; 32():180-8. PubMed ID: 26040744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron.
    Jiang C; Xu X; Megharaj M; Naidu R; Chen Z
    Sci Total Environ; 2015 Oct; 530-531():241-246. PubMed ID: 26047857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system.
    Cheng R; Cheng C; Liu GH; Zheng X; Li G; Li J
    Chemosphere; 2015 Dec; 141():138-43. PubMed ID: 26184790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decreasing ammonium generation using hydrogenotrophic bacteria in the process of nitrate reduction by nanoscale zero-valent iron.
    An Y; Li T; Jin Z; Dong M; Li Q; Wang S
    Sci Total Environ; 2009 Oct; 407(21):5465-70. PubMed ID: 19665759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influences of nanoscale zero valent iron loadings and bicarbonate and calcium concentrations on hydrogen evolution in anaerobic column experiments.
    Paar H; Ruhl AS; Jekel M
    Water Res; 2015 Jan; 68():731-9. PubMed ID: 25462777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.
    Zhu H; Jia Y; Wu X; Wang H
    J Hazard Mater; 2009 Dec; 172(2-3):1591-6. PubMed ID: 19733972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate.
    Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E
    Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron.
    Cho DW; Song H; Schwartz FW; Kim B; Jeon BH
    Chemosphere; 2015 Apr; 125():41-9. PubMed ID: 25665757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron.
    Dong H; Ahmad K; Zeng G; Li Z; Chen G; He Q; Xie Y; Wu Y; Zhao F; Zeng Y
    Environ Pollut; 2016 Apr; 211():363-9. PubMed ID: 26796746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphate removal from aqueous solutions by nanoscale zero-valent iron.
    Wu D; Shen Y; Ding A; Qiu M; Yang Q; Zheng S
    Environ Technol; 2013; 34(17-20):2663-9. PubMed ID: 24527628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.
    Su Y; Adeleye AS; Huang Y; Sun X; Dai C; Zhou X; Zhang Y; Keller AA
    Water Res; 2014 Oct; 63():102-11. PubMed ID: 24999115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of artificial intelligence in modeling of nitrate removal process using zero-valent iron nanoparticles-loaded carboxymethyl cellulose.
    Sepehri S; Javadi Moghaddam J; Abdoli S; Asgari Lajayer B; Shu W; Price GW
    Environ Geochem Health; 2024 Jun; 46(8):262. PubMed ID: 38926193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution.
    Petala E; Dimos K; Douvalis A; Bakas T; Tucek J; Zbořil R; Karakassides MA
    J Hazard Mater; 2013 Oct; 261():295-306. PubMed ID: 23959249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron.
    Sun Y; Ding C; Cheng W; Wang X
    J Hazard Mater; 2014 Sep; 280():399-408. PubMed ID: 25194557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluidized zero valent iron bed reactor for nitrate removal.
    Chen YM; Li CW; Chen SS
    Chemosphere; 2005 May; 59(6):753-9. PubMed ID: 15811403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrate removal in zero-valent iron packed columns.
    Westerhoff P; James J
    Water Res; 2003 Apr; 37(8):1818-30. PubMed ID: 12697226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.
    Xia X; Ling L; Zhang WX
    Chemosphere; 2017 Feb; 168():1597-1603. PubMed ID: 27939658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene oxide-induced formation of a boron-doped iron oxide shell on the surface of NZVI for enhancing nitrate removal.
    Han L; Li B; Tao S; An J; Fu B; Han Y; Li W; Li X; Peng S; Yin T
    Chemosphere; 2020 Aug; 252():126496. PubMed ID: 32203782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.