These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25358770)

  • 21. Cobalt oxide hollow nanoparticles derived by bio-templating.
    Kim JW; Choi SH; Lillehei PT; Chu SH; King GC; Watt GD
    Chem Commun (Camb); 2005 Aug; (32):4101-3. PubMed ID: 16091813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structures of a tetrahedral open pore ferritin from the hyperthermophilic archaeon Archaeoglobus fulgidus.
    Johnson E; Cascio D; Sawaya MR; Gingery M; Schröder I
    Structure; 2005 Apr; 13(4):637-48. PubMed ID: 15837202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining the relaxivity values of protein cage-templated nanoparticles using magnetic resonance imaging.
    Sana B; Lim S
    Methods Mol Biol; 2015; 1252():39-50. PubMed ID: 25358771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembling ferritin-dendrimer nanoparticles for targeted delivery of nucleic acids to myeloid leukemia cells.
    Palombarini F; Masciarelli S; Incocciati A; Liccardo F; Di Fabio E; Iazzetti A; Fabrizi G; Fazi F; Macone A; Bonamore A; Boffi A
    J Nanobiotechnology; 2021 Jun; 19(1):172. PubMed ID: 34107976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metallic cation induced one-dimensional assembly of poly(acrylic acid)-1-dodecanethiol-stabilized gold nanoparticles.
    Zhu L; Xue D; Wang Z
    Langmuir; 2008 Oct; 24(20):11385-9. PubMed ID: 18808165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleation-controlled polymerization of nanoparticles into supramolecular structures.
    Wang J; Xia H; Zhang Y; Lu H; Kamat R; Dobrynin AV; Cheng J; Lin Y
    J Am Chem Soc; 2013 Aug; 135(31):11417-20. PubMed ID: 23697509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides.
    Yamashita I; Kirimura H; Okuda M; Nishio K; Sano K; Shiba K; Hayashi T; Hara M; Mishima Y
    Small; 2006 Oct; 2(10):1148-52. PubMed ID: 17193580
    [No Abstract]   [Full Text] [Related]  

  • 28. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold.
    Sharma J; Chhabra R; Andersen CS; Gothelf KV; Yan H; Liu Y
    J Am Chem Soc; 2008 Jun; 130(25):7820-1. PubMed ID: 18510317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles.
    Li M; Viravaidya C; Mann S
    Small; 2007 Sep; 3(9):1477-81. PubMed ID: 17768776
    [No Abstract]   [Full Text] [Related]  

  • 30. Polymer encapsulation of inorganic nanoparticles for biomedical applications.
    Ladj R; Bitar A; Eissa MM; Fessi H; Mugnier Y; Le Dantec R; Elaissari A
    Int J Pharm; 2013 Dec; 458(1):230-41. PubMed ID: 24036010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Embedding of individual ferritin molecules in large, self-supporting silica nanofilms.
    Fujikawa S; Muto E; Kunitake T
    Langmuir; 2007 Apr; 23(8):4629-33. PubMed ID: 17328567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microemulsion-mediated self-assembly and silicification of mesostructured ferritin nanocrystals.
    Lambert EM; Viravaidya C; Li M; Mann S
    Angew Chem Int Ed Engl; 2010 Jun; 49(24):4100-3. PubMed ID: 20425877
    [No Abstract]   [Full Text] [Related]  

  • 33. Iron-based ferritin nanocore as a contrast agent.
    Sana B; Johnson E; Sheah K; Poh CL; Lim S
    Biointerphases; 2010 Sep; 5(3):FA48-52. PubMed ID: 21171713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directing the assembly of gold nanoparticles with two-dimensional molecular networks.
    Mezour MA; Perepichka II; Zhu J; Lennox RB; Perepichka DF
    ACS Nano; 2014 Mar; 8(3):2214-22. PubMed ID: 24512203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of phenyldithioesters with gold nanoparticles (AuNPs): implications for AuNP functionalization and molecular barcoding of AuNP assemblies.
    Blakey I; Schiller TL; Merican Z; Fredericks PM
    Langmuir; 2010 Jan; 26(2):692-701. PubMed ID: 19824687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resistive random access memory utilizing ferritin protein with Pt nanoparticles.
    Uenuma M; Kawano K; Zheng B; Okamoto N; Horita M; Yoshii S; Yamashita I; Uraoka Y
    Nanotechnology; 2011 May; 22(21):215201. PubMed ID: 21451239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA nanocages swallow gold nanoparticles (AuNPs) to form AuNP@DNA cage core-shell structures.
    Zhang C; Li X; Tian C; Yu G; Li Y; Jiang W; Mao C
    ACS Nano; 2014 Feb; 8(2):1130-5. PubMed ID: 24410162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A protein-protein host-guest complex: Thermostable ferritin encapsulating positively supercharged green fluorescent protein.
    Pulsipher KW; Bulos JA; Villegas JA; Saven JG; Dmochowski IJ
    Protein Sci; 2018 Oct; 27(10):1755-1766. PubMed ID: 30051936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molten matrix sputtering synthesis of water-soluble luminescent Au nanoparticles with a large Stokes shift.
    Shishino Y; Yonezawa T; Kawai K; Nishihara H
    Chem Commun (Camb); 2010 Oct; 46(38):7211-3. PubMed ID: 20740224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ferritin cage for encapsulation and delivery of bioactive nutrients: From structure, property to applications.
    Zang J; Chen H; Zhao G; Wang F; Ren F
    Crit Rev Food Sci Nutr; 2017 Nov; 57(17):3673-3683. PubMed ID: 26980693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.