BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25358859)

  • 1. Comparison of different mobilization strategies for capillary isoelectric focusing of ovalbumin variants.
    Kristl T; Stutz H
    J Sep Sci; 2015 Jan; 38(1):148-56. PubMed ID: 25358859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sampling strategies for capillary isoelectric focusing with electroosmotic zone mobilization assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Páger C; Mosher RA; Thormann W
    Electrophoresis; 2012 Mar; 33(6):970-80. PubMed ID: 22655305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential injection setup for capillary isoelectric focusing combined with MS detection.
    Páger C; Dörnyei A; Kilár F
    Electrophoresis; 2011 Jul; 32(14):1875-84. PubMed ID: 21769892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient.
    Wang Z; Ivory C; Minerick AR
    Electrophoresis; 2017 Oct; 38(20):2565-2575. PubMed ID: 28722147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different capillary isoelectric focusing methods--use of "narrow pH cuts" of carrier ampholytes as original tools to improve resolution.
    Poitevin M; Morin A; Busnel JM; Descroix S; Hennion MC; Peltre G
    J Chromatogr A; 2007 Jul; 1155(2):230-6. PubMed ID: 17335834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier ampholyte-free free-flow isoelectric focusing for separation of protein.
    Wang S; Zhang L; Sun H; Chu Z; Chen H; Zhao Y; Zhang W
    Electrophoresis; 2019 Sep; 40(18-19):2610-2617. PubMed ID: 30977523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic mobilization in capillary isoelectric focusing by a weak acid or an acidic ampholyte as catholyte assessed by computer simulation.
    Thormann W
    Electrophoresis; 2023 Apr; 44(7-8):656-666. PubMed ID: 36448503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution computer simulation of the dynamics of isoelectric focusing: in quest of more realistic input parameters for carrier ampholytes.
    Mosher RA; Thormann W
    Electrophoresis; 2008 Mar; 29(5):1036-47. PubMed ID: 18219653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier ampholytes for IEF, on their fortieth anniversary (1967-2007), brought to trial in court: the verdict.
    Righetti PG; Simó C; Sebastiano R; Citterio A
    Electrophoresis; 2007 Nov; 28(21):3799-810. PubMed ID: 17922506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass distribution and focusing properties of carrier ampholytes for isoelectric focusing: I. Novel and unexpected results.
    Sebastiano R; Simó C; Mendieta ME; Antonioli P; Citterio A; Cifuentes A; Peltre G; Righetti PG
    Electrophoresis; 2006 Oct; 27(20):3919-34. PubMed ID: 16991205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the operational pH value of a buffering membrane by an isoelectric trapping separation of a carrier ampholyte mixture.
    North RY; Vigh G
    Electrophoresis; 2008 Mar; 29(5):1077-81. PubMed ID: 18271066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the pH gradient formation and cathodic drift in microchip isoelectric focusing with imaged UV detection.
    Xu Z; Okabe N; Arai A; Hirokawa T
    Electrophoresis; 2010 Oct; 31(21):3558-65. PubMed ID: 20925054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic study in CIEF: defining and optimizing experimental parameters critical to method reproducibility and robustness.
    Mack S; Cruzado-Park I; Chapman J; Ratnayake C; Vigh G
    Electrophoresis; 2009 Dec; 30(23):4049-58. PubMed ID: 19960469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instabilities of the pH gradient in carrier ampholyte-based isoelectric focusing: Elucidation of the contributing electrokinetic processes by computer simulation.
    Thormann W; Mosher RA
    Electrophoresis; 2021 Apr; 42(7-8):814-833. PubMed ID: 33184847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electrolyte pH on CIEF with narrow pH range ampholytes.
    Páger C; Vargová A; Takácsi-Nagy A; Dörnyei Á; Kilár F
    Electrophoresis; 2012 Nov; 33(22):3269-75. PubMed ID: 23086725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier ampholytes rehabilitated: gel isoelectric focusing on pH gradients visualized in real-time by automated fluorescence scanning in the HPGE-1000 apparatus.
    Gombocz E; Cortez E
    Electrophoresis; 1999 Jun; 20(7):1365-72. PubMed ID: 10424457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution dynamic computer simulation analysis of the behavior of sample components with pI values outside the pH gradient established by carrier ampholyte CIEF.
    Thormann W; Kilár F
    Electrophoresis; 2013 Mar; 34(5):716-24. PubMed ID: 23229109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2017 Mar; 38(5):677-688. PubMed ID: 27699824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary isoelectric focusing-mass spectrometry for shotgun approach in proteomics.
    Storms HF; van der Heijden R; Tjaden UR; van der Greef J
    Electrophoresis; 2004 Oct; 25(20):3461-7. PubMed ID: 15490439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state protein focusing in carrier ampholyte-based isoelectric focusing: Part II-validation and case studies.
    Shim J; Yoo K; Dutta P
    Electrophoresis; 2017 Mar; 38(5):667-676. PubMed ID: 27868220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.