BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 25359125)

  • 21. Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis.
    Kim JS; Petrella JK; Cross JM; Bamman MM
    J Appl Physiol (1985); 2007 Nov; 103(5):1488-95. PubMed ID: 17673556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in understanding resistance exercise training-induced skeletal muscle hypertrophy in humans.
    Joanisse S; Lim C; McKendry J; Mcleod JC; Stokes T; Phillips SM
    F1000Res; 2020; 9():. PubMed ID: 32148775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle.
    Shad BJ; Smeuninx B; Atherton PJ; Breen L
    Appl Physiol Nutr Metab; 2015 Dec; 40(12):1233-41. PubMed ID: 26566242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification.
    Pallafacchina G; Calabria E; Serrano AL; Kalhovde JM; Schiaffino S
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9213-8. PubMed ID: 12084817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions.
    Roberts MD; McCarthy JJ; Hornberger TA; Phillips SM; Mackey AL; Nader GA; Boppart MD; Kavazis AN; Reidy PT; Ogasawara R; Libardi CA; Ugrinowitsch C; Booth FW; Esser KA
    Physiol Rev; 2023 Oct; 103(4):2679-2757. PubMed ID: 37382939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skeletal muscle hypertrophy and atrophy signaling pathways.
    Glass DJ
    Int J Biochem Cell Biol; 2005 Oct; 37(10):1974-84. PubMed ID: 16087388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of work-induced hypertrophy of skeletal muscle.
    Goldberg AL; Etlinger JD; Goldspink DF; Jablecki C
    Med Sci Sports; 1975; 7(3):185-98. PubMed ID: 128681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle.
    Joassard OR; Amirouche A; Gallot YS; Desgeorges MM; Castells J; Durieux AC; Berthon P; Freyssenet DG
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2444-55. PubMed ID: 23916784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. mTORC1 and the regulation of skeletal muscle anabolism and mass.
    Adegoke OA; Abdullahi A; Tavajohi-Fini P
    Appl Physiol Nutr Metab; 2012 Jun; 37(3):395-406. PubMed ID: 22509811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy.
    Britto FA; Begue G; Rossano B; Docquier A; Vernus B; Sar C; Ferry A; Bonnieu A; Ollendorff V; Favier FB
    Am J Physiol Endocrinol Metab; 2014 Dec; 307(11):E983-93. PubMed ID: 25315696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The metabolic and temporal basis of muscle hypertrophy in response to resistance exercise.
    Brook MS; Wilkinson DJ; Smith K; Atherton PJ
    Eur J Sport Sci; 2016 Sep; 16(6):633-44. PubMed ID: 26289597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myogenic, matrix, and growth factor mRNA expression in human skeletal muscle: effect of contraction intensity and feeding.
    Agergaard J; Reitelseder S; Pedersen TG; Doessing S; Schjerling P; Langberg H; Miller BF; Aagaard P; Kjaer M; Holm L
    Muscle Nerve; 2013 May; 47(5):748-59. PubMed ID: 23519763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.
    Barbé C; Kalista S; Loumaye A; Ritvos O; Lause P; Ferracin B; Thissen JP
    Am J Physiol Endocrinol Metab; 2015 Sep; 309(6):E557-67. PubMed ID: 26219865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resistance exercise, muscle loading/unloading and the control of muscle mass.
    Baar K; Nader G; Bodine S
    Essays Biochem; 2006; 42():61-74. PubMed ID: 17144880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy.
    Farup J; de Paoli F; Bjerg K; Riis S; Ringgard S; Vissing K
    Scand J Med Sci Sports; 2015 Dec; 25(6):754-63. PubMed ID: 25603897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy.
    Philippou A; Halapas A; Maridaki M; Koutsilieris M
    J Musculoskelet Neuronal Interact; 2007; 7(3):208-18. PubMed ID: 17947802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms regulating skeletal muscle growth and atrophy.
    Schiaffino S; Dyar KA; Ciciliot S; Blaauw B; Sandri M
    FEBS J; 2013 Sep; 280(17):4294-314. PubMed ID: 23517348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy.
    Nader GA; von Walden F; Liu C; Lindvall J; Gutmann L; Pistilli EE; Gordon PM
    J Appl Physiol (1985); 2014 Mar; 116(6):693-702. PubMed ID: 24458751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women.
    Kim JS; Cross JM; Bamman MM
    Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1110-9. PubMed ID: 15644458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The type 1 insulin-like growth factor receptor (IGF-IR) pathway is mandatory for the follistatin-induced skeletal muscle hypertrophy.
    Kalista S; Schakman O; Gilson H; Lause P; Demeulder B; Bertrand L; Pende M; Thissen JP
    Endocrinology; 2012 Jan; 153(1):241-53. PubMed ID: 22087027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.