These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 25359154)
1. Rapid quantification of rice root-associated bacteria by flow cytometry. Valdameri G; Kokot TB; Pedrosa Fde O; de Souza EM Lett Appl Microbiol; 2015 Mar; 60(3):237-41. PubMed ID: 25359154 [TBL] [Abstract][Full Text] [Related]
2. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry. Alves LP; Almeida AT; Cruz LM; Pedrosa FO; de Souza EM; Chubatsu LS; Müller-Santos M; Valdameri G Braz J Med Biol Res; 2017 Jan; 50(1):e5492. PubMed ID: 28099582 [TBL] [Abstract][Full Text] [Related]
3. Herbaspirillum rubrisubalbicans, a mild pathogen impairs growth of rice by augmenting ethylene levels. Valdameri G; Alberton D; Moure VR; Kokot TB; Kukolj C; Brusamarello-Santos LCC; Monteiro RA; Pedrosa FO; de Souza EM Plant Mol Biol; 2017 Aug; 94(6):625-640. PubMed ID: 28674938 [TBL] [Abstract][Full Text] [Related]
4. Common gene expression patterns are observed in rice roots during associations with plant growth-promoting bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. Wiggins G; Thomas J; Rahmatallah Y; Deen C; Haynes A; Degon Z; Glazko G; Mukherjee A Sci Rep; 2022 May; 12(1):8827. PubMed ID: 35614083 [TBL] [Abstract][Full Text] [Related]
5. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. do Amaral FP; Pankievicz VC; Arisi AC; de Souza EM; Pedrosa F; Stacey G Plant Mol Biol; 2016 Apr; 90(6):689-97. PubMed ID: 26873699 [TBL] [Abstract][Full Text] [Related]
6. Method for simple and rapid enumeration of total epiphytic bacteria in the washing solution of rice plants. Niwa R; Yoshida S; Furuya N; Tsuchiya K; Tsushima S Can J Microbiol; 2011 Jan; 57(1):62-7. PubMed ID: 21217798 [TBL] [Abstract][Full Text] [Related]
7. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. Thomas J; Kim HR; Rahmatallah Y; Wiggins G; Yang Q; Singh R; Glazko G; Mukherjee A PLoS One; 2019; 14(5):e0217309. PubMed ID: 31120967 [TBL] [Abstract][Full Text] [Related]
8. A novel pharmaceutical approach for the analytical validation of probiotic bacterial count by flow cytometry. Michelutti L; Bulfoni M; Nencioni E J Microbiol Methods; 2020 Mar; 170():105834. PubMed ID: 31917164 [TBL] [Abstract][Full Text] [Related]
9. Azospirillum spp. metabolize [17,17-2H2]gibberellin A20 to [17,17-2H2]gibberellin A1 in vivo in dy rice mutant seedlings. Cassán FD; Lucangeli CD; Bottini R; Piccoli PN Plant Cell Physiol; 2001 Jul; 42(7):763-7. PubMed ID: 11479384 [TBL] [Abstract][Full Text] [Related]
10. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR. Stets MI; Alqueres SM; Souza EM; Pedrosa Fde O; Schmid M; Hartmann A; Cruz LM Appl Environ Microbiol; 2015 Oct; 81(19):6700-9. PubMed ID: 26187960 [TBL] [Abstract][Full Text] [Related]
11. [Initial stages of interaction of Azospirillum brasilense bacteria with wheat germ roots: adsorption, deformation of root hairs]. Egorenkova IV; Konnova SA; Skvortsov IM; Ignatov VV Mikrobiologiia; 2000; 69(1):120-6. PubMed ID: 10808499 [TBL] [Abstract][Full Text] [Related]
13. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Burdman S; Dulguerova G; Okon Y; Jurkevitch E Mol Plant Microbe Interact; 2001 Apr; 14(4):555-61. PubMed ID: 11310743 [TBL] [Abstract][Full Text] [Related]