These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 25359161)
1. Anticorrelation between surface and subsurface point defects and the impact on the redox chemistry of TiO2(110). Yoon Y; Du Y; Garcia JC; Zhu Z; Wang ZT; Petrik NG; Kimmel GA; Dohnalek Z; Henderson MA; Rousseau R; Deskins NA; Lyubinetsky I Chemphyschem; 2015 Feb; 16(2):313-21. PubMed ID: 25359161 [TBL] [Abstract][Full Text] [Related]
2. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110). Haubrich J; Kaxiras E; Friend CM Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119 [TBL] [Abstract][Full Text] [Related]
3. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101). Cheng H; Selloni A J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581 [TBL] [Abstract][Full Text] [Related]
4. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). He Y; Dulub O; Cheng H; Selloni A; Diebold U Phys Rev Lett; 2009 Mar; 102(10):106105. PubMed ID: 19392132 [TBL] [Abstract][Full Text] [Related]
5. Adsorption and reactions of O2 on anatase TiO2. Li YF; Aschauer U; Chen J; Selloni A Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024 [TBL] [Abstract][Full Text] [Related]
6. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Setvín M; Aschauer U; Scheiber P; Li YF; Hou W; Schmid M; Selloni A; Diebold U Science; 2013 Aug; 341(6149):988-91. PubMed ID: 23990556 [TBL] [Abstract][Full Text] [Related]
7. McMurry chemistry on TiO(2)(110): Reductive C=C coupling of benzaldehyde driven by titanium interstitials. Benz L; Haubrich J; Quiller RG; Jensen SC; Friend CM J Am Chem Soc; 2009 Oct; 131(41):15026-31. PubMed ID: 19778050 [TBL] [Abstract][Full Text] [Related]
8. Surface defects and their impact on the electronic structure of Mo-doped CaO films: an STM and DFT study. Cui Y; Shao X; Prada S; Giordano L; Pacchioni G; Freund HJ; Nilius N Phys Chem Chem Phys; 2014 Jul; 16(25):12764-72. PubMed ID: 24837555 [TBL] [Abstract][Full Text] [Related]
9. The role of interstitial sites in the Ti3d defect state in the band gap of titania. Wendt S; Sprunger PT; Lira E; Madsen GK; Li Z; Hansen JØ; Matthiesen J; Blekinge-Rasmussen A; Laegsgaard E; Hammer B; Besenbacher F Science; 2008 Jun; 320(5884):1755-9. PubMed ID: 18535207 [TBL] [Abstract][Full Text] [Related]
10. Imaging of the hydrogen subsurface site in rutile TiO2. Enevoldsen GH; Pinto HP; Foster AS; Jensen MC; Hofer WA; Hammer B; Lauritsen JV; Besenbacher F Phys Rev Lett; 2009 Apr; 102(13):136103. PubMed ID: 19392373 [TBL] [Abstract][Full Text] [Related]
11. Pinning mass-selected Agn clusters on the TiO2(110)-1x1 surface via deposition at high kinetic energy. Tong X; Benz L; Chrétien S; Kemper P; Kolmakov A; Metiu H; Bowers MT; Buratto SK J Chem Phys; 2005 Nov; 123(20):204701. PubMed ID: 16351287 [TBL] [Abstract][Full Text] [Related]
12. Defects in surface chemistry--reductive coupling of benzaldehyde on rutile TiO₂(110). Clawin PM; Friend CM; Al-Shamery K Chemistry; 2014 Jun; 20(25):7665-9. PubMed ID: 24825761 [TBL] [Abstract][Full Text] [Related]
13. Surface chemistry and photochemistry of small molecules on rutile TiO Wu L; Wang Z; Xiong F; Sun G; Chai P; Zhang Z; Xu H; Fu C; Huang W J Chem Phys; 2020 Jan; 152(4):044702. PubMed ID: 32007048 [TBL] [Abstract][Full Text] [Related]
14. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals. Raghunath P; Huang WF; Lin MC J Chem Phys; 2013 Apr; 138(15):154705. PubMed ID: 23614434 [TBL] [Abstract][Full Text] [Related]
15. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
16. Thermally activated surface oxygen defects at the perimeter of Au/TiO2: a DFT+U study. Saqlain MA; Hussain A; Siddiq M; Ferreira AR; Leitão AA Phys Chem Chem Phys; 2015 Oct; 17(38):25403-10. PubMed ID: 26358616 [TBL] [Abstract][Full Text] [Related]
17. (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Scheiber P; Fidler M; Dulub O; Schmid M; Diebold U; Hou W; Aschauer U; Selloni A Phys Rev Lett; 2012 Sep; 109(13):136103. PubMed ID: 23030108 [TBL] [Abstract][Full Text] [Related]
18. CO2 adsorption on TiO2(110) rutile: insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments. Sorescu DC; Lee J; Al-Saidi WA; Jordan KD J Chem Phys; 2011 Mar; 134(10):104707. PubMed ID: 21405184 [TBL] [Abstract][Full Text] [Related]
19. Acetone-Assisted Oxygen Vacancy Diffusion on TiO2(110). Xia Y; Zhang B; Ye J; Ge Q; Zhang Z J Phys Chem Lett; 2012 Oct; 3(20):2970-4. PubMed ID: 26292235 [TBL] [Abstract][Full Text] [Related]
20. Influence of external electric fields on oxygen vacancies at the anatase (101) surface. Selçuk S; Selloni A J Chem Phys; 2014 Aug; 141(8):084705. PubMed ID: 25173028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]