BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25359627)

  • 41. Population genomic analysis of model and nonmodel organisms using sequenced RAD tags.
    Hohenlohe PA; Catchen J; Cresko WA
    Methods Mol Biol; 2012; 888():235-60. PubMed ID: 22665285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Collapsed haplotype pattern method for linkage analysis of next-generation sequence data.
    Wang GT; Zhang D; Li B; Dai H; Leal SM
    Eur J Hum Genet; 2015 Dec; 23(12):1739-43. PubMed ID: 25873013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advanced Applications of Next-Generation Sequencing Technologies to Orchid Biology.
    Yeh CM; Liu ZJ; Tsai WC
    Curr Issues Mol Biol; 2018; 27():51-70. PubMed ID: 28885174
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The impact of next-generation sequencing technologies on HLA research.
    Hosomichi K; Shiina T; Tajima A; Inoue I
    J Hum Genet; 2015 Nov; 60(11):665-73. PubMed ID: 26311539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mapping Challenging Mutations by Whole-Genome Sequencing.
    Smith HE; Fabritius AS; Jaramillo-Lambert A; Golden A
    G3 (Bethesda); 2016 May; 6(5):1297-304. PubMed ID: 26945029
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Next-Generation Sequencing for Identification of EMS-Induced Mutations in Caenorhabditis elegans.
    Lehrbach NJ; Ji F; Sadreyev R
    Curr Protoc Mol Biol; 2017 Jan; 117():7.29.1-7.29.12. PubMed ID: 28060408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Next-Generation Sequencing Technologies.
    McCombie WR; McPherson JD; Mardis ER
    Cold Spring Harb Perspect Med; 2019 Nov; 9(11):. PubMed ID: 30478097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutation Mapping and Identification by Whole-Genome Sequencing.
    Smith HE
    Methods Mol Biol; 2022; 2468():257-269. PubMed ID: 35320569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Status and Prospects of Next Generation Sequencing Technologies in Crop Plants.
    Sharma TR; Devanna BN; Kiran K; Singh PK; Arora K; Jain P; Tiwari IM; Dubey H; Saklani B; Kumari M; Singh J; Jaswal R; Kapoor R; Pawar DV; Sinha S; Bisht DS; Solanke AU; Mondal TK
    Curr Issues Mol Biol; 2018; 27():1-36. PubMed ID: 28885172
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of an EMS-induced causal mutation in a gene required for boron-mediated root development by low-coverage genome re-sequencing in Arabidopsis.
    Tabata R; Kamiya T; Shigenobu S; Yamaguchi K; Yamada M; Hasebe M; Fujiwara T; Sawa S
    Plant Signal Behav; 2013 Jan; 8(1):e22534. PubMed ID: 23104114
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bionano Genome Mapping: High-Throughput, Ultra-Long Molecule Genome Analysis System for Precision Genome Assembly and Haploid-Resolved Structural Variation Discovery.
    Bocklandt S; Hastie A; Cao H
    Adv Exp Med Biol; 2019; 1129():97-118. PubMed ID: 30968363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Next-generation mapping of Arabidopsis genes.
    Austin RS; Vidaurre D; Stamatiou G; Breit R; Provart NJ; Bonetta D; Zhang J; Fung P; Gong Y; Wang PW; McCourt P; Guttman DS
    Plant J; 2011 Aug; 67(4):715-25. PubMed ID: 21518053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elucidating the process of SNPs identification in non-reference genome crops.
    Sudan J; Sharma S; Salgotra RK; Pandey RK; Neelam D; Singh R
    J Biomol Struct Dyn; 2023; 41(24):15682-15690. PubMed ID: 37021361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strategies for identification of mutations induced by carbon-ion beam irradiation in Arabidopsis thaliana by whole genome re-sequencing.
    Du Y; Luo S; Yu L; Cui T; Chen X; Yang J; Li X; Li W; Wang J; Zhou L
    Mutat Res; 2018 Jan; 807():21-30. PubMed ID: 29268080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Massively parallel sequencing approaches for characterization of structural variation.
    Koboldt DC; Larson DE; Chen K; Ding L; Wilson RK
    Methods Mol Biol; 2012; 838():369-84. PubMed ID: 22228022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing.
    Park ST; Kim J
    Int Neurourol J; 2016 Nov; 20(Suppl 2):S76-83. PubMed ID: 27915479
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Whole Genome Sequencing and a New Bioinformatics Platform Allow for Rapid Gene Identification in D. melanogaster EMS Screens.
    Gonzalez MA; Van Booven D; Hulme W; Ulloa RH; Lebrigio RF; Osterloh J; Logan M; Freeman M; Zuchner S
    Biology (Basel); 2012 Dec; 1(3):766-77. PubMed ID: 24832518
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advances in whole genome sequencing technology.
    Zhao J; Grant SF
    Curr Pharm Biotechnol; 2011 Feb; 12(2):293-305. PubMed ID: 21050163
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping and Cloning of Chemical Induced Mutations by Whole-Genome Sequencing of Bulked Segregants.
    Hua J; Wang S; Sun Q
    Methods Mol Biol; 2017; 1578():285-289. PubMed ID: 28220434
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Robustness of Massively Parallel Sequencing Platforms.
    Kavak P; Yüksel B; Aksu S; Kulekci MO; Güngör T; Hach F; Şahinalp SC; ; Alkan C; Sağıroğlu MŞ
    PLoS One; 2015; 10(9):e0138259. PubMed ID: 26382624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.