BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25359720)

  • 1. Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation.
    Bowen TS; Mangner N; Werner S; Glaser S; Kullnick Y; Schrepper A; Doenst T; Oberbach A; Linke A; Steil L; Schuler G; Adams V
    J Appl Physiol (1985); 2015 Jan; 118(1):11-9. PubMed ID: 25359720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nox4 Knockout Does Not Prevent Diaphragm Atrophy, Contractile Dysfunction, or Mitochondrial Maladaptation in the Early Phase Post-Myocardial Infarction in Mice.
    Hahn D; Kumar RA; Muscato DR; Ryan TE; Schröder K; Ferreira LF
    Cell Physiol Biochem; 2021 Aug; 55(4):489-504. PubMed ID: 34416105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction.
    Whidden MA; McClung JM; Falk DJ; Hudson MB; Smuder AJ; Nelson WB; Powers SK
    J Appl Physiol (1985); 2009 Feb; 106(2):385-94. PubMed ID: 18974366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Janus kinase inhibition prevents cancer- and myocardial infarction-mediated diaphragm muscle weakness in mice.
    Smith IJ; Roberts B; Beharry A; Godinez GL; Payan DG; Kinsella TM; Judge AR; Ferreira LF
    Am J Physiol Regul Integr Comp Physiol; 2016 Apr; 310(8):R707-10. PubMed ID: 26864813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise Training Prevents Diaphragm Contractile Dysfunction in Heart Failure.
    Mangner N; Bowen TS; Werner S; Fischer T; Kullnick Y; Oberbach A; Linke A; Steil L; Schuler G; Adams V
    Med Sci Sports Exerc; 2016 Nov; 48(11):2118-2124. PubMed ID: 27327028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure.
    Laitano O; Ahn B; Patel N; Coblentz PD; Smuder AJ; Yoo JK; Christou DD; Adhihetty PJ; Ferreira LF
    J Appl Physiol (1985); 2016 Apr; 120(7):733-42. PubMed ID: 26846552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmented cardiac formation of oxidatively-induced carbonylated proteins accompanies the increased functional severity of post-myocardial infarction heart failure in the setting of type 1 diabetes mellitus.
    Dennis KE; Hill S; Rose KL; Sampson UK; Hill MF
    Cardiovasc Pathol; 2013; 22(6):473-80. PubMed ID: 23566587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle Nox4 knockout prevents and Nox2 knockout blunts loss of maximal diaphragm force in mice with heart failure with reduced ejection fraction.
    Kumar RA; Hahn D; Kelley RC; Muscato DR; Shamoun A; Curbelo-Bermudez N; Butler WG; Yegorova S; Ryan TE; Ferreira LF
    Free Radic Biol Med; 2023 Jan; 194():23-32. PubMed ID: 36436728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD(P)H oxidase subunit p47phox is elevated, and p47phox knockout prevents diaphragm contractile dysfunction in heart failure.
    Ahn B; Beharry AW; Frye GS; Judge AR; Ferreira LF
    Am J Physiol Lung Cell Mol Physiol; 2015 Sep; 309(5):L497-505. PubMed ID: 26209274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.
    Cunha TF; Bechara LR; Bacurau AV; Jannig PR; Voltarelli VA; Dourado PM; Vasconcelos AR; Scavone C; Ferreira JC; Brum PC
    J Appl Physiol (1985); 2017 Apr; 122(4):817-827. PubMed ID: 28104751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.
    Bowen TS; Eisenkolb S; Drobner J; Fischer T; Werner S; Linke A; Mangner N; Schuler G; Adams V
    FASEB J; 2017 Jan; 31(1):60-71. PubMed ID: 27650398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diaphragm weakness and proteomics (global and redox) modifications in heart failure with reduced ejection fraction in rats.
    Kelley RC; McDonagh B; Brumback B; Walter GA; Vohra R; Ferreira LF
    J Mol Cell Cardiol; 2020 Feb; 139():238-249. PubMed ID: 32035137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial infarction in mice alters sarcomeric function via post-translational protein modification.
    Avner BS; Shioura KM; Scruggs SB; Grachoff M; Geenen DL; Helseth DL; Farjah M; Goldspink PH; Solaro RJ
    Mol Cell Biochem; 2012 Apr; 363(1-2):203-15. PubMed ID: 22160857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats.
    van Hees HW; van der Heijden HF; Ottenheijm CA; Heunks LM; Pigmans CJ; Verheugt FW; Brouwer RM; Dekhuijzen PN
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H819-28. PubMed ID: 17449557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diaphragm and ventilatory dysfunction during cancer cachexia.
    Roberts BM; Ahn B; Smuder AJ; Al-Rajhi M; Gill LC; Beharry AW; Powers SK; Fuller DD; Ferreira LF; Judge AR
    FASEB J; 2013 Jul; 27(7):2600-10. PubMed ID: 23515443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myofilament protein carbonylation contributes to the contractile dysfunction in the infarcted LV region of mouse hearts.
    Balogh A; Santer D; Pásztor ET; Tóth A; Czuriga D; Podesser BK; Trescher K; Jaquet K; Erdodi F; Edes I; Papp Z
    Cardiovasc Res; 2014 Jan; 101(1):108-19. PubMed ID: 24127233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction.
    Doerries C; Grote K; Hilfiker-Kleiner D; Luchtefeld M; Schaefer A; Holland SM; Sorrentino S; Manes C; Schieffer B; Drexler H; Landmesser U
    Circ Res; 2007 Mar; 100(6):894-903. PubMed ID: 17332431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-sequencing reveals transcriptional signature of pathological remodeling in the diaphragm of rats after myocardial infarction.
    Yegorova S; Yegorov O; Ferreira LF
    Gene; 2021 Feb; 770():145356. PubMed ID: 33333219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of N- acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats.
    Martinez PF; Bonomo C; Guizoni DM; Junior SA; Damatto RL; Cezar MD; Lima AR; Pagan LU; Seiva FR; Fernandes DC; Laurindo FR; Novelli EL; Matsubara LS; Zornoff LA; Okoshi K; Okoshi MP
    Cell Physiol Biochem; 2015; 35(1):148-59. PubMed ID: 25591758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (Pro)renin receptor in skeletal muscle is involved in the development of insulin resistance associated with postinfarct heart failure in mice.
    Fukushima A; Kinugawa S; Takada S; Matsushima S; Sobirin MA; Ono T; Takahashi M; Suga T; Homma T; Masaki Y; Furihata T; Kadoguchi T; Yokota T; Okita K; Tsutsui H
    Am J Physiol Endocrinol Metab; 2014 Sep; 307(6):E503-14. PubMed ID: 25074986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.