These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Augmented cardiac formation of oxidatively-induced carbonylated proteins accompanies the increased functional severity of post-myocardial infarction heart failure in the setting of type 1 diabetes mellitus. Dennis KE; Hill S; Rose KL; Sampson UK; Hill MF Cardiovasc Pathol; 2013; 22(6):473-80. PubMed ID: 23566587 [TBL] [Abstract][Full Text] [Related]
8. Skeletal muscle Nox4 knockout prevents and Nox2 knockout blunts loss of maximal diaphragm force in mice with heart failure with reduced ejection fraction. Kumar RA; Hahn D; Kelley RC; Muscato DR; Shamoun A; Curbelo-Bermudez N; Butler WG; Yegorova S; Ryan TE; Ferreira LF Free Radic Biol Med; 2023 Jan; 194():23-32. PubMed ID: 36436728 [TBL] [Abstract][Full Text] [Related]
12. Diaphragm weakness and proteomics (global and redox) modifications in heart failure with reduced ejection fraction in rats. Kelley RC; McDonagh B; Brumback B; Walter GA; Vohra R; Ferreira LF J Mol Cell Cardiol; 2020 Feb; 139():238-249. PubMed ID: 32035137 [TBL] [Abstract][Full Text] [Related]
13. Myocardial infarction in mice alters sarcomeric function via post-translational protein modification. Avner BS; Shioura KM; Scruggs SB; Grachoff M; Geenen DL; Helseth DL; Farjah M; Goldspink PH; Solaro RJ Mol Cell Biochem; 2012 Apr; 363(1-2):203-15. PubMed ID: 22160857 [TBL] [Abstract][Full Text] [Related]
14. Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats. van Hees HW; van der Heijden HF; Ottenheijm CA; Heunks LM; Pigmans CJ; Verheugt FW; Brouwer RM; Dekhuijzen PN Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H819-28. PubMed ID: 17449557 [TBL] [Abstract][Full Text] [Related]
15. Diaphragm and ventilatory dysfunction during cancer cachexia. Roberts BM; Ahn B; Smuder AJ; Al-Rajhi M; Gill LC; Beharry AW; Powers SK; Fuller DD; Ferreira LF; Judge AR FASEB J; 2013 Jul; 27(7):2600-10. PubMed ID: 23515443 [TBL] [Abstract][Full Text] [Related]
16. Myofilament protein carbonylation contributes to the contractile dysfunction in the infarcted LV region of mouse hearts. Balogh A; Santer D; Pásztor ET; Tóth A; Czuriga D; Podesser BK; Trescher K; Jaquet K; Erdodi F; Edes I; Papp Z Cardiovasc Res; 2014 Jan; 101(1):108-19. PubMed ID: 24127233 [TBL] [Abstract][Full Text] [Related]
17. Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Doerries C; Grote K; Hilfiker-Kleiner D; Luchtefeld M; Schaefer A; Holland SM; Sorrentino S; Manes C; Schieffer B; Drexler H; Landmesser U Circ Res; 2007 Mar; 100(6):894-903. PubMed ID: 17332431 [TBL] [Abstract][Full Text] [Related]
18. RNA-sequencing reveals transcriptional signature of pathological remodeling in the diaphragm of rats after myocardial infarction. Yegorova S; Yegorov O; Ferreira LF Gene; 2021 Feb; 770():145356. PubMed ID: 33333219 [TBL] [Abstract][Full Text] [Related]
19. Influence of N- acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats. Martinez PF; Bonomo C; Guizoni DM; Junior SA; Damatto RL; Cezar MD; Lima AR; Pagan LU; Seiva FR; Fernandes DC; Laurindo FR; Novelli EL; Matsubara LS; Zornoff LA; Okoshi K; Okoshi MP Cell Physiol Biochem; 2015; 35(1):148-59. PubMed ID: 25591758 [TBL] [Abstract][Full Text] [Related]
20. (Pro)renin receptor in skeletal muscle is involved in the development of insulin resistance associated with postinfarct heart failure in mice. Fukushima A; Kinugawa S; Takada S; Matsushima S; Sobirin MA; Ono T; Takahashi M; Suga T; Homma T; Masaki Y; Furihata T; Kadoguchi T; Yokota T; Okita K; Tsutsui H Am J Physiol Endocrinol Metab; 2014 Sep; 307(6):E503-14. PubMed ID: 25074986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]