These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 25359728)
1. Gene regulatory interactions at lateral organ boundaries in maize. Lewis MW; Bolduc N; Hake K; Htike Y; Hay A; Candela H; Hake S Development; 2014 Dec; 141(23):4590-7. PubMed ID: 25359728 [TBL] [Abstract][Full Text] [Related]
2. The establishment of axial patterning in the maize leaf. Foster T; Hay A; Johnston R; Hake S Development; 2004 Aug; 131(16):3921-9. PubMed ID: 15253937 [TBL] [Abstract][Full Text] [Related]
3. The dominant mutant Wavy auricle in blade1 disrupts patterning in a lateral domain of the maize leaf. Hay A; Hake S Plant Physiol; 2004 May; 135(1):300-8. PubMed ID: 15141070 [TBL] [Abstract][Full Text] [Related]
4. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Moreno MA; Harper LC; Krueger RW; Dellaporta SL; Freeling M Genes Dev; 1997 Mar; 11(5):616-28. PubMed ID: 9119226 [TBL] [Abstract][Full Text] [Related]
5. Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Harper L; Freeling M Genetics; 1996 Dec; 144(4):1871-82. PubMed ID: 8978070 [TBL] [Abstract][Full Text] [Related]
6. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Walsh J; Waters CA; Freeling M Genes Dev; 1998 Jan; 12(2):208-18. PubMed ID: 9490265 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation. Johnston R; Wang M; Sun Q; Sylvester AW; Hake S; Scanlon MJ Plant Cell; 2014 Dec; 26(12):4718-32. PubMed ID: 25516601 [TBL] [Abstract][Full Text] [Related]
8. Natural variation at sympathy for the ligule controls penetrance of the semidominant Liguleless narrow-R mutation in Zea mays. Buescher EM; Moon J; Runkel A; Hake S; Dilkes BP G3 (Bethesda); 2014 Oct; 4(12):2297-306. PubMed ID: 25344411 [TBL] [Abstract][Full Text] [Related]
9. The liguleless-1 gene acts tissue specifically in maize leaf development. Becraft PW; Bongard-Pierce DK; Sylvester AW; Poethig RS; Freeling M Dev Biol; 1990 Sep; 141(1):220-32. PubMed ID: 2391003 [TBL] [Abstract][Full Text] [Related]
10. Sectors of liguleless-1 tissue interrupt an inductive signal during maize leaf development. Becraft PW; Freeling M Plant Cell; 1991 Aug; 3(8):801-7. PubMed ID: 1820819 [TBL] [Abstract][Full Text] [Related]
11. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. Bai F; Reinheimer R; Durantini D; Kellogg EA; Schmidt RJ Proc Natl Acad Sci U S A; 2012 Jul; 109(30):12225-30. PubMed ID: 22773815 [TBL] [Abstract][Full Text] [Related]
12. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Chuck G; Whipple C; Jackson D; Hake S Development; 2010 Apr; 137(8):1243-50. PubMed ID: 20223762 [TBL] [Abstract][Full Text] [Related]
13. The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Moon J; Candela H; Hake S Development; 2013 Jan; 140(2):405-12. PubMed ID: 23250214 [TBL] [Abstract][Full Text] [Related]
14. Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium. Leiboff S; Strable J; Johnston R; Federici S; Sylvester AW; Scanlon MJ New Phytol; 2021 Apr; 230(1):218-227. PubMed ID: 33280125 [TBL] [Abstract][Full Text] [Related]
15. Mosaic analysis of extended auricle1 (eta1) suggests that a two-way signaling pathway is involved in positioning the blade/sheath boundary in Zea mays. Osmont KS; Sadeghian N; Freeling M Dev Biol; 2006 Jul; 295(1):1-12. PubMed ID: 16684518 [TBL] [Abstract][Full Text] [Related]
16. Mosaic analysis of the dominant mutant, Gnarley1-R, reveals distinct lateral and transverse signaling pathways during maize leaf development. Foster T; Veit B; Hake S Development; 1999 Jan; 126(2):305-13. PubMed ID: 9847244 [TBL] [Abstract][Full Text] [Related]
17. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Tian J; Wang C; Xia J; Wu L; Xu G; Wu W; Li D; Qin W; Han X; Chen Q; Jin W; Tian F Science; 2019 Aug; 365(6454):658-664. PubMed ID: 31416957 [TBL] [Abstract][Full Text] [Related]
18. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Bortiri E; Chuck G; Vollbrecht E; Rocheford T; Martienssen R; Hake S Plant Cell; 2006 Mar; 18(3):574-85. PubMed ID: 16399802 [TBL] [Abstract][Full Text] [Related]
19. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Vernoud V; Laigle G; Rozier F; Meeley RB; Perez P; Rogowsky PM Plant J; 2009 Sep; 59(6):883-94. PubMed ID: 19453441 [TBL] [Abstract][Full Text] [Related]
20. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Fowler JE; Freeling M Dev Genet; 1996; 18(3):198-222. PubMed ID: 8631155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]