BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25359886)

  • 1. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.
    Yamauchi S; Obara K; Uchibori K; Kamimura A; Azumi K; Kihara A
    J Cell Sci; 2015 Jan; 128(1):61-9. PubMed ID: 25359886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cfs1p, a Novel Membrane Protein in the PQ-Loop Family, Is Involved in Phospholipid Flippase Functions in Yeast.
    Yamamoto T; Fujimura-Kamada K; Shioji E; Suzuki R; Tanaka K
    G3 (Bethesda); 2017 Jan; 7(1):179-192. PubMed ID: 28057802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rim101 pathway contributes to ER stress adaptation through sensing the state of plasma membrane.
    Obara K; Kihara A
    Biochem J; 2017 Jan; 474(1):51-63. PubMed ID: 27803246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Rim101 pathway is involved in Rsb1 expression induced by altered lipid asymmetry.
    Ikeda M; Kihara A; Denpoh A; Igarashi Y
    Mol Biol Cell; 2008 May; 19(5):1922-31. PubMed ID: 18287536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rim101 pathway mediates adaptation to external alkalization and altered lipid asymmetry: hypothesis describing the detection of distinct stresses by the Rim21 sensor protein.
    Obara K; Kamura T
    Curr Genet; 2021 Apr; 67(2):213-218. PubMed ID: 33184698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane.
    Mioka T; Fujimura-Kamada K; Mizugaki N; Kishimoto T; Sano T; Nunome H; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2018 May; 29(10):1203-1218. PubMed ID: 29540528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A complex genetic interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate Golgi functions.
    Miyasaka M; Mioka T; Kishimoto T; Itoh E; Tanaka K
    PLoS One; 2020; 15(7):e0236520. PubMed ID: 32730286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
    Takar M; Wu Y; Graham TR
    J Biol Chem; 2016 Jul; 291(30):15727-39. PubMed ID: 27235400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M; Huang Y; Graham TR
    J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid flippases and Sfk1 are essential for the retention of ergosterol in the plasma membrane.
    Kishimoto T; Mioka T; Itoh E; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2021 Jul; 32(15):1374-1392. PubMed ID: 34038161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling events of the Rim101 pathway occur at the plasma membrane in a ubiquitination-dependent manner.
    Obara K; Kihara A
    Mol Cell Biol; 2014 Sep; 34(18):3525-34. PubMed ID: 25002535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid flippases Lem3p-Dnf1p and Lem3p-Dnf2p are involved in the sorting of the tryptophan permease Tat2p in yeast.
    Hachiro T; Yamamoto T; Nakano K; Tanaka K
    J Biol Chem; 2013 Feb; 288(5):3594-608. PubMed ID: 23250744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY.
    Nishino K; Obara K; Kihara A
    J Biol Chem; 2015 Dec; 290(52):30797-805. PubMed ID: 26527678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae.
    Saito K; Fujimura-Kamada K; Furuta N; Kato U; Umeda M; Tanaka K
    Mol Biol Cell; 2004 Jul; 15(7):3418-32. PubMed ID: 15090616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions of phospholipid flippases.
    Tanaka K; Fujimura-Kamada K; Yamamoto T
    J Biochem; 2011 Feb; 149(2):131-43. PubMed ID: 21134888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis.
    Elbaz-Alon Y; Morgan B; Clancy A; Amoako TN; Zalckvar E; Dick TP; Schwappach B; Schuldiner M
    FEMS Yeast Res; 2014 Nov; 14(7):1055-67. PubMed ID: 25130273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Snc1p v-SNARE transport to the prospore membrane during yeast sporulation is dependent on endosomal retrieval pathways.
    Morishita M; Mendonsa R; Wright J; Engebrecht J
    Traffic; 2007 Sep; 8(9):1231-45. PubMed ID: 17645731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surprising roles for phospholipid binding proteins revealed by high throughput genetics.
    LeBlanc MA; McMaster CR
    Biochem Cell Biol; 2010 Aug; 88(4):565-74. PubMed ID: 20651827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-glycosylation of Rim21 at an Unconventional Site Fine-tunes Its Behavior in the Plasma Membrane.
    Obara K; Kotani T; Nakatogawa H; Kihara A; Kamura T
    Cell Struct Funct; 2020 Jan; 45(1):1-8. PubMed ID: 31787665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optogenetic system to control membrane phospholipid asymmetry through flippase activation in budding yeast.
    Suzuki T; Mioka T; Tanaka K; Nagatani A
    Sci Rep; 2020 Jul; 10(1):12474. PubMed ID: 32719316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.