BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25359933)

  • 1. Severe hypoxia impairs lateralization in a marine teleost fish.
    Lucon-Xiccato T; Nati JJ; Blasco FR; Johansen JL; Steffensen JF; Domenici P
    J Exp Biol; 2014 Dec; 217(Pt 23):4115-8. PubMed ID: 25359933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable gene transcription underlies phenotypic convergence of hypoxia tolerance in sculpins.
    Mandic M; Ramon ML; Gerstein AC; Gracey AY; Richards JG
    BMC Evol Biol; 2018 Nov; 18(1):163. PubMed ID: 30390629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioural asymmetry affects escape performance in a teleost fish.
    Dadda M; Koolhaas WH; Domenici P
    Biol Lett; 2010 Jun; 6(3):414-7. PubMed ID: 20089537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated carbon dioxide affects behavioural lateralization in a coral reef fish.
    Domenici P; Allan B; McCormick MI; Munday PL
    Biol Lett; 2012 Feb; 8(1):78-81. PubMed ID: 21849307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The osmorespiratory compromise in sculpins: impaired gas exchange is associated with freshwater tolerance.
    Henriksson P; Mandic M; Richards JG
    Physiol Biochem Zool; 2008; 81(3):310-9. PubMed ID: 18419557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intertidal pool fish Girella laevifrons (Kyphosidae) shown strong physiological homeostasis but shy personality: The cost of living in hypercapnic habitats.
    Benítez S; Duarte C; Opitz T; Lagos NA; Pulgar JM; Vargas CA; Lardies MA
    Mar Pollut Bull; 2017 May; 118(1-2):57-63. PubMed ID: 28215555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to hypoxic environments; bearded gobies Sufflogobius bibarbatus in the Benguela upwelling ecosystem.
    Salvanes AGV; Gibbons MJ
    J Fish Biol; 2018 Mar; 92(3):752-772. PubMed ID: 29537083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escaping from multiple visual threats: modulation of escape responses in Pacific staghorn sculpin (Leptocottus armatus).
    Kimura H; Pfalzgraff T; Levet M; Kawabata Y; Steffensen JF; Johansen JL; Domenici P
    J Exp Biol; 2022 May; 225(9):. PubMed ID: 35403681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. At odds with the group: changes in lateralization and escape performance reveal conformity and conflict in fish schools.
    Chivers DP; McCormick MI; Allan BJ; Mitchell MD; Gonçalves EJ; Bryshun R; Ferrari MC
    Proc Biol Sci; 2016 Oct; 283(1841):. PubMed ID: 27798294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent transcriptional patterns are related to differences in hypoxia tolerance between the intertidal and the subtidal sculpins.
    Mandic M; Ramon ML; Gracey AY; Richards JG
    Mol Ecol; 2014 Dec; 23(24):6091-103. PubMed ID: 25370158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The angular position of a refuge affects escape responses in staghorn sculpin Leptocottus armatus.
    Shi X; Møller JS; Højgaard J; Johansen JL; Steffensen JF; Liu D; Domenici P
    J Fish Biol; 2017 Jun; 90(6):2434-2442. PubMed ID: 28370093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia: from molecular responses to ecosystem responses.
    Wu RS
    Mar Pollut Bull; 2002; 45(1-12):35-45. PubMed ID: 12398365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Evolution of Lateralization in Group Hunting Sailfish.
    Kurvers RHJM; Krause S; Viblanc PE; Herbert-Read JE; Zaslansky P; Domenici P; Marras S; Steffensen JF; Svendsen MBS; Wilson ADM; Couillaud P; Boswell KM; Krause J
    Curr Biol; 2017 Feb; 27(4):521-526. PubMed ID: 28190733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of fish preference and mortality under hypoxic water in the coastal environment.
    Karim MR; Sekine M; Ukita M
    Mar Pollut Bull; 2003; 47(1-6):25-9. PubMed ID: 12787593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateralization in response to social stimuli in a cooperatively breeding cichlid fish.
    Reddon AR; Balshine S
    Behav Processes; 2010 Sep; 85(1):68-71. PubMed ID: 20547214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between growth, brain asymmetry and behavioural lateralization in a cichlid fish.
    Reddon AR; Gutiérrez-Ibáñez C; Wylie DR; Hurd PL
    Behav Brain Res; 2009 Jul; 201(1):223-8. PubMed ID: 19428637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of fish aggregating devices (FADs) on anti-predator behaviour within experimental mesocosms.
    Sinopoli M; Cattano C; Andaloro F; Sarà G; Butler CM; Gristina M
    Mar Environ Res; 2015 Dec; 112(Pt A):152-9. PubMed ID: 26525872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateralization in the escape behaviour of the common wall lizard (Podarcis muralis).
    Bonati B; Csermely D; López P; Martín J
    Behav Brain Res; 2010 Feb; 207(1):1-6. PubMed ID: 19737579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are cerebral and behavioural lateralization related to anxiety-like traits in the animal model zebrafish (
    Miletto Petrazzini ME; Gambaretto L; Dadda M; Brennan C; Agrillo C
    Laterality; 2021; 26(1-2):144-162. PubMed ID: 33334244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A walking behavior generates functional overland movements in the tidepool sculpin, Oligocottus maculosus.
    Bressman NR; Gibb AC; Farina SC
    Zoology (Jena); 2018 Dec; 131():20-28. PubMed ID: 30502824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.