BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25360158)

  • 1. Functional consequences of somatic mutations in cancer using protein pocket-based prioritization approach.
    Vuong H; Cheng F; Lin CC; Zhao Z
    Genome Med; 2014; 6(10):81. PubMed ID: 25360158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Prioritization of Druggable Mutations in ∼5000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach.
    Zhao J; Cheng F; Wang Y; Arteaga CL; Zhao Z
    Mol Cell Proteomics; 2016 Feb; 15(2):642-56. PubMed ID: 26657081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-Specific Signaling Networks Rewired by Major Somatic Mutations in Human Cancer Revealed by Proteome-Wide Discovery.
    Zhao J; Cheng F; Zhao Z
    Cancer Res; 2017 Jun; 77(11):2810-2821. PubMed ID: 28364002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hotspot mutations delineating diverse mutational signatures and biological utilities across cancer types.
    Chen T; Wang Z; Zhou W; Chong Z; Meric-Bernstam F; Mills GB; Chen K
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):394. PubMed ID: 27356755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrative genomics approach for identifying novel functional consequences of PBRM1 truncated mutations in clear cell renal cell carcinoma (ccRCC).
    Wang Y; Guo X; Bray MJ; Ding Z; Zhao Z
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):515. PubMed ID: 27556922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development.
    Chen L; Miao Y; Liu M; Zeng Y; Gao Z; Peng D; Hu B; Li X; Zheng Y; Xue Y; Zuo Z; Xie Y; Ren J
    Front Genet; 2018; 9():254. PubMed ID: 30065750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types.
    Cheng F; Liu C; Lin CC; Zhao J; Jia P; Li WH; Zhao Z
    PLoS Comput Biol; 2015 Sep; 11(9):e1004497. PubMed ID: 26352260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of potential synthetic lethal genes to p53 using a computational biology approach.
    Wang X; Simon R
    BMC Med Genomics; 2013 Sep; 6():30. PubMed ID: 24025726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IDENTIFY CANCER DRIVER GENES THROUGH SHARED MENDELIAN DISEASE PATHOGENIC VARIANTS AND CANCER SOMATIC MUTATIONS.
    Ma M; Wang C; Glicksberg BS; Schadt EE; Li SD; Chen R
    Pac Symp Biocomput; 2017; 22():473-484. PubMed ID: 27896999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain landscapes of somatic mutations in cancer.
    Nehrt NL; Peterson TA; Park D; Kann MG
    BMC Genomics; 2012 Jun; 13 Suppl 4(Suppl 4):S9. PubMed ID: 22759657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studying tumorigenesis through network evolution and somatic mutational perturbations in the cancer interactome.
    Cheng F; Jia P; Wang Q; Lin CC; Li WH; Zhao Z
    Mol Biol Evol; 2014 Aug; 31(8):2156-69. PubMed ID: 24881052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.
    Tokheim C; Bhattacharya R; Niknafs N; Gygax DM; Kim R; Ryan M; Masica DL; Karchin R
    Cancer Res; 2016 Jul; 76(13):3719-31. PubMed ID: 27197156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census.
    Malhotra S; Alsulami AF; Heiyun Y; Ochoa BM; Jubb H; Forbes S; Blundell TL
    PLoS One; 2019; 14(7):e0219935. PubMed ID: 31323058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binning somatic mutations based on biological knowledge for predicting survival: an application in renal cell carcinoma.
    Kim D; Li R; Dudek SM; Wallace JR; Ritchie MD
    Pac Symp Biocomput; 2015; ():96-107. PubMed ID: 25592572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer3D: understanding cancer mutations through protein structures.
    Porta-Pardo E; Hrabe T; Godzik A
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D968-73. PubMed ID: 25392415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes.
    Nono AD; Chen K; Liu X
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of somatic mutations on gene expression: an association perspective.
    Jia P; Zhao Z
    Brief Bioinform; 2017 May; 18(3):413-425. PubMed ID: 27127206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of somatic mutations driving cancer: uncovering functional protein regions in disease development.
    Mészáros B; Zeke A; Reményi A; Simon I; Dosztányi Z
    Biol Direct; 2016 May; 11():23. PubMed ID: 27150584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.