These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25360324)

  • 1. Fabrication and Characterization of Flexible Electrowetting on Dielectrics (EWOD) Microlens.
    Li C; Jiang H
    Micromachines (Basel); 2014 Jul; 5(3):432-441. PubMed ID: 25360324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrowetting-driven variable-focus microlens on flexible surfaces.
    Li C; Jiang H
    Appl Phys Lett; 2012 Jun; 100(23):231105-2311054. PubMed ID: 22904571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Electrowetting-on-Dielectric Microlens Array Sheet.
    Van Grinsven KL; Ousati Ashtiani A; Jiang H
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31373304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optical wavefront sensor based on a double layer microlens array.
    Lin V; Wei HC; Hsieh HT; Su GD
    Sensors (Basel); 2011; 11(11):10293-307. PubMed ID: 22346643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of an electrohydrodynamically actuated microlens with areal density modulated electrodes.
    Ashtiani AO; Jiang H
    J Micromech Microeng; 2016 Jan; 26(1):. PubMed ID: 32773966
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zhong Y; Yu H; Zhou P; Wen Y; Zhao W; Zou W; Luo H; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39550-39560. PubMed ID: 34378373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrowetting on a polymer microlens array.
    Im M; Kim DH; Lee JH; Yoon JB; Choi YK
    Langmuir; 2010 Jul; 26(14):12443-7. PubMed ID: 20465273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a bionic compound eye on a curved surface by using a self-assembly technique.
    Xu M; Li S; Li J; Zhang L; Lu H
    Opt Express; 2022 Aug; 30(17):30750-30759. PubMed ID: 36242173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer.
    Moghaddam MS; Latifi H; Shahraki H; Cheri MS
    Appl Opt; 2015 Apr; 54(10):3010-7. PubMed ID: 25967216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward individually tunable compound eyes with transparent graphene electrode.
    Shahini A; Jin H; Zhou Z; Zhao Y; Chen PY; Hua J; Cheng MM
    Bioinspir Biomim; 2017 Jun; 12(4):046002. PubMed ID: 28463225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate.
    Van Grinsven KL; Ousati Ashtiani A; Jiang H
    Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of a two-dimensional individually addressable electrowetting microlens array.
    Gilinsky SD; Zohrabi M; Lim WY; Supekar OD; Bright VM; Gopinath JT
    Opt Express; 2023 Sep; 31(19):30550-30561. PubMed ID: 37710595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile Miniature Tunable Liquid Lenses Using Transparent Graphene Electrodes.
    Shahini A; Xia J; Zhou Z; Zhao Y; Cheng MM
    Langmuir; 2016 Feb; 32(6):1658-65. PubMed ID: 26800762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and Characterization of Curved Compound Eyes Based on Multifocal Microlenses.
    Lian G; Liu Y; Tao K; Xing H; Huang R; Chi M; Zhou W; Wu Y
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32947769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lorentz Force Actuated Tunable-Focus Liquid Lens.
    Van Grinsven KL; Ousati Ashtiani A; Jiang H
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31652548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor.
    Li C; Hall G; Zeng X; Zhu D; Eliceiri K; Jiang H
    Appl Phys Lett; 2011 Apr; 98(17):171104. PubMed ID: 22046057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a dual-focus artificial compound eye with improved imaging based on modified microprinting and air-assisted deformation.
    Li J; Wang W; Fu Z; Zhu R; Huang Y
    Appl Opt; 2023 Apr; 62(10):D125-D130. PubMed ID: 37132777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable dielectric liquid lens on flexible substrate.
    Lu YS; Tu H; Xu Y; Jiang H
    Appl Phys Lett; 2013 Dec; 103(26):261113. PubMed ID: 24493877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy.
    Miccio L; Finizio A; Grilli S; Vespini V; Paturzo M; De Nicola S; Ferraro P
    Opt Express; 2009 Feb; 17(4):2487-99. PubMed ID: 19219152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.