These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25360450)

  • 1. SnSe alloy as a promising anode material for Na-ion batteries.
    Kim Y; Kim Y; Park Y; Jo YN; Kim YJ; Choi NS; Lee KT
    Chem Commun (Camb); 2015 Jan; 51(1):50-3. PubMed ID: 25360450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodium-Ion Storage Performance.
    Yang X; Zhang R; Chen N; Meng X; Yang P; Wang C; Zhang Y; Wei Y; Chen G; Du F
    Chemistry; 2016 Jan; 22(4):1445-51. PubMed ID: 26680235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.
    Jung SC; Jung DS; Choi JW; Han YK
    J Phys Chem Lett; 2014 Apr; 5(7):1283-8. PubMed ID: 26274485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reaction mechanism of FeSb(2) as anode for sodium-ion batteries.
    Baggetto L; Hah HY; Johnson CE; Bridges CA; Johnson JA; Veith GM
    Phys Chem Chem Phys; 2014 May; 16(20):9538-45. PubMed ID: 24727860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new sodiation-desodiation mechanism of the titania-based negative electrode for sodium-ion batteries.
    Ding C; Nohira T; Hagiwara R
    Phys Chem Chem Phys; 2016 Nov; 18(44):30770-30776. PubMed ID: 27796378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex situ electrochemical sodiation/desodiation observation of Co₃O₄ anchored carbon nanotubes: a high performance sodium-ion battery anode produced by pulsed plasma in a liquid.
    Rahman MM; Sultana I; Chen Z; Srikanth M; Li LH; Dai XJ; Chen Y
    Nanoscale; 2015 Aug; 7(30):13088-95. PubMed ID: 26176997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries.
    Su D; Wang C; Ahn H; Wang G
    Phys Chem Chem Phys; 2013 Aug; 15(30):12543-50. PubMed ID: 23793542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SnSe Nanosheet Array on Carbon Cloth as a High-Capacity Anode for Sodium-Ion Batteries.
    Yang W; Chen Y; Yin X; Lai X; Wang J; Jian J
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42811-42822. PubMed ID: 37655468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant-Free Aqueous Synthesis of Pure Single-Crystalline SnSe Nanosheet Clusters as Anode for High Energy- and Power-Density Sodium-Ion Batteries.
    Yuan S; Zhu YH; Li W; Wang S; Xu D; Li L; Zhang Y; Zhang XB
    Adv Mater; 2017 Jan; 29(4):. PubMed ID: 27874214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries.
    Li W; Yang Z; Cheng J; Zhong X; Gu L; Yu Y
    Nanoscale; 2014 May; 6(9):4532-7. PubMed ID: 24663690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu S; Wang R; Wang Z; Lin Z
    Nanoscale; 2014 Jul; 6(14):8350-8. PubMed ID: 24934278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partially crystalline Zn₂GeO₄ nanorod/graphene composites as anode materials for high performance lithium ion batteries.
    Wang R; Wu S; Lv Y; Lin Z
    Langmuir; 2014 Jul; 30(27):8215-20. PubMed ID: 24937774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage.
    Zhang Y; Pu X; Yang Y; Zhu Y; Hou H; Jing M; Yang X; Chen J; Ji X
    Phys Chem Chem Phys; 2015 Jun; 17(24):15764-70. PubMed ID: 26016643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance.
    Li Z; Ding J; Mitlin D
    Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tin-germanium alloys as anode materials for sodium-ion batteries.
    Abel PR; Fields MG; Heller A; Mullins CB
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15860-7. PubMed ID: 25158125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries.
    Marbella LE; Evans ML; Groh MF; Nelson J; Griffith KJ; Morris AJ; Grey CP
    J Am Chem Soc; 2018 Jun; 140(25):7994-8004. PubMed ID: 29916704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tin phosphide as a promising anode material for Na-ion batteries.
    Kim Y; Kim Y; Choi A; Woo S; Mok D; Choi NS; Jung YS; Ryu JH; Oh SM; Lee KT
    Adv Mater; 2014 Jun; 26(24):4139-44. PubMed ID: 24711097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process.
    Park GD; Lee JH; Kang YC
    Nanoscale; 2016 Jun; 8(23):11889-96. PubMed ID: 27240748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.