BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 25360519)

  • 1. Rapid analysis of glycolytic and oxidative substrate flux of cancer cells in a microplate.
    Pike Winer LS; Wu M
    PLoS One; 2014; 9(10):e109916. PubMed ID: 25360519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and interpretation of microplate-based oxygen consumption and pH data.
    Divakaruni AS; Paradyse A; Ferrick DA; Murphy AN; Jastroch M
    Methods Enzymol; 2014; 547():309-54. PubMed ID: 25416364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rubella Viruses Shift Cellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with a Strain-Specific Requirement for Glutamine.
    Bilz NC; Jahn K; Lorenz M; Lüdtke A; Hübschen JM; Geyer H; Mankertz A; Hübner D; Liebert UG; Claus C
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.
    Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB
    Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a multi-sensor platform for integrating extracellular acidification rate with multi-metabolite flux measurement for small biological samples.
    Obeidat YM; Cheng MH; Catandi G; Carnevale E; Chicco AJ; Chen TW
    Biosens Bioelectron; 2019 May; 133():39-47. PubMed ID: 30909011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live Metabolic Profile Analysis of Zebrafish Embryos Using a Seahorse XF 24 Extracellular Flux Analyzer.
    Bond ST; McEwen KA; Yoganantharajah P; Gibert Y
    Methods Mol Biol; 2018; 1797():393-401. PubMed ID: 29896705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate oxidation and ATP supply in AS-30D hepatoma cells.
    Rodríguez-Enríquez S; Torres-Márquez ME; Moreno-Sánchez R
    Arch Biochem Biophys; 2000 Mar; 375(1):21-30. PubMed ID: 10683245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity.
    Rodrigues-Silva E; Siqueira-Santos ES; Ruas JS; Ignarro RS; Figueira TR; Rogério F; Castilho RF
    J Neurooncol; 2017 Jul; 133(3):519-529. PubMed ID: 28540666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impaired Bioenergetics of Diabetic Cardiac Microvascular Endothelial Cells.
    Zhang H; Shen Y; Kim IM; Weintraub NL; Tang Y
    Front Endocrinol (Lausanne); 2021; 12():642857. PubMed ID: 34054724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying the Metabolism of Epithelial-Mesenchymal Plasticity Using the Seahorse XFe96 Extracellular Flux Analyzer.
    Bhatia S; Thompson EW; Gunter JH
    Methods Mol Biol; 2021; 2179():327-340. PubMed ID: 32939731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines.
    Mitov MI; Harris JW; Alstott MC; Zaytseva YY; Evers BM; Butterfield DA
    Exp Cell Res; 2017 May; 354(2):112-121. PubMed ID: 28342898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycolytic reprogramming in macrophages and MSCs during inflammation.
    Li X; Shen H; Zhang M; Teissier V; Huang EE; Gao Q; Tsubosaka M; Toya M; Kushioka J; Maduka CV; Contag CH; Chow SK; Zhang N; Goodman SB
    Front Immunol; 2023; 14():1199751. PubMed ID: 37675119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose metabolism and metabolic flexibility in blood platelets.
    Aibibula M; Naseem KM; Sturmey RG
    J Thromb Haemost; 2018 Nov; 16(11):2300-2314. PubMed ID: 30151891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism.
    Plitzko B; Loesgen S
    Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell bioenergetics and ATP production of boar spermatozoa.
    Prieto OB; Algieri C; Spinaci M; Trombetti F; Nesci S; Bucci D
    Theriogenology; 2023 Oct; 210():162-168. PubMed ID: 37517301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Transforming Growth Factor-β in regulating hepatocellular carcinoma oxidative metabolism.
    Soukupova J; Malfettone A; Hyroššová P; Hernández-Alvarez MI; Peñuelas-Haro I; Bertran E; Junza A; Capellades J; Giannelli G; Yanes O; Zorzano A; Perales JC; Fabregat I
    Sci Rep; 2017 Oct; 7(1):12486. PubMed ID: 28970582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioenergetic characterization of mouse podocytes.
    Abe Y; Sakairi T; Kajiyama H; Shrivastav S; Beeson C; Kopp JB
    Am J Physiol Cell Physiol; 2010 Aug; 299(2):C464-76. PubMed ID: 20445170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.