These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 25360523)

  • 1. LRRK2 transport is regulated by its novel interacting partner Rab32.
    Waschbüsch D; Michels H; Strassheim S; Ossendorf E; Kessler D; Gloeckner CJ; Barnekow A
    PLoS One; 2014; 9(10):e111632. PubMed ID: 25360523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rab32 interacts with SNX6 and affects retromer-dependent Golgi trafficking.
    Waschbüsch D; Hübel N; Ossendorf E; Lobbestael E; Baekelandt V; Lindsay AJ; McCaffrey MW; Khan AR; Barnekow A
    PLoS One; 2019; 14(1):e0208889. PubMed ID: 30640902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity.
    Gómez-Suaga P; Rivero-Ríos P; Fdez E; Blanca Ramírez M; Ferrer I; Aiastui A; López De Munain A; Hilfiker S
    Hum Mol Genet; 2014 Dec; 23(25):6779-96. PubMed ID: 25080504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous Rab38 regulates LRRK2's membrane recruitment and substrate Rab phosphorylation in melanocytes.
    Unapanta A; Shavarebi F; Porath J; Shen Y; Balen C; Nguyen A; Tseng J; Leong WS; Liu M; Lis P; Di Pietro SM; Hiniker A
    J Biol Chem; 2023 Oct; 299(10):105192. PubMed ID: 37625589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily.
    Stafa K; Tsika E; Moser R; Musso A; Glauser L; Jones A; Biskup S; Xiong Y; Bandopadhyay R; Dawson VL; Dawson TM; Moore DJ
    Hum Mol Genet; 2014 Apr; 23(8):2055-77. PubMed ID: 24282027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes.
    Wasmeier C; Romao M; Plowright L; Bennett DC; Raposo G; Seabra MC
    J Cell Biol; 2006 Oct; 175(2):271-81. PubMed ID: 17043139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein.
    Niu J; Yu M; Wang C; Xu Z
    J Neurochem; 2012 Aug; 122(3):650-8. PubMed ID: 22639965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.
    Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z
    J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model.
    Alegre-Abarrategui J; Christian H; Lufino MM; Mutihac R; Venda LL; Ansorge O; Wade-Martins R
    Hum Mol Genet; 2009 Nov; 18(21):4022-34. PubMed ID: 19640926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LRRK2 binds to the Rab32 subfamily in a GTP-dependent manner
    McGrath E; Waschbüsch D; Baker BM; Khan AR
    Small GTPases; 2021 Mar; 12(2):133-146. PubMed ID: 31552791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A.
    Rivero-Ríos P; Romo-Lozano M; Madero-Pérez J; Thomas AP; Biosa A; Greggio E; Hilfiker S
    J Biol Chem; 2019 Mar; 294(13):4738-4758. PubMed ID: 30709905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo.
    Dodson MW; Leung LK; Lone M; Lizzio MA; Guo M
    Dis Model Mech; 2014 Dec; 7(12):1351-63. PubMed ID: 25288684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate.
    Krumova P; Reyniers L; Meyer M; Lobbestael E; Stauffer D; Gerrits B; Muller L; Hoving S; Kaupmann K; Voshol J; Fabbro D; Bauer A; Rovelli G; Taymans JM; Bouwmeester T; Baekelandt V
    FASEB J; 2015 Jul; 29(7):2980-92. PubMed ID: 25854701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity.
    Guo L; Gandhi PN; Wang W; Petersen RB; Wilson-Delfosse AL; Chen SG
    Exp Cell Res; 2007 Oct; 313(16):3658-70. PubMed ID: 17706965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in late endocytic trafficking related to the pathobiology of LRRK2-linked Parkinson's disease.
    Rivero-Ríos P; Gómez-Suaga P; Fernández B; Madero-Pérez J; Schwab AJ; Ebert AD; Hilfiker S
    Biochem Soc Trans; 2015 Jun; 43(3):390-5. PubMed ID: 26009181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 14-3-3 proteins are promising LRRK2 interactors.
    Rudenko IN; Cookson MR
    Biochem J; 2010 Sep; 430(3):e5-6. PubMed ID: 20795948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MAP1B rescues LRRK2 mutant-mediated cytotoxicity.
    Chan SL; Chua LL; Angeles DC; Tan EK
    Mol Brain; 2014 Apr; 7():29. PubMed ID: 24754922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAB32 Ser71Arg in autosomal dominant Parkinson's disease: linkage, association, and functional analyses.
    Gustavsson EK; Follett J; Trinh J; Barodia SK; Real R; Liu Z; Grant-Peters M; Fox JD; Appel-Cresswell S; Stoessl AJ; Rajput A; Rajput AH; Auer R; Tilney R; Sturm M; Haack TB; Lesage S; Tesson C; Brice A; Vilariño-Güell C; Ryten M; Goldberg MS; West AB; Hu MT; Morris HR; Sharma M; Gan-Or Z; Samanci B; Lis P; Periñan MT; Amouri R; Ben Sassi S; Hentati F; ; Tonelli F; Alessi DR; Farrer MJ
    Lancet Neurol; 2024 Jun; 23(6):603-614. PubMed ID: 38614108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization.
    Nichols RJ; Dzamko N; Morrice NA; Campbell DG; Deak M; Ordureau A; Macartney T; Tong Y; Shen J; Prescott AR; Alessi DR
    Biochem J; 2010 Sep; 430(3):393-404. PubMed ID: 20642453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the effects of GTPase and kinase domain mutations on LRRK2 endosomal localization and activity.
    Rinaldi C; Waters CS; Li Z; Kumbier K; Rao L; Nichols RJ; Jacobson MP; Wu LF; Altschuler SJ
    Cell Rep; 2023 May; 42(5):112447. PubMed ID: 37141099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.